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• Probably approximately correct learning 

• Generalization bound of SVM 

• Vapnik-Chervonenkis dimension (VC dimension)



PAC Learning

3 A Formal Learning Model

In this chapter we define our main formal learning model – the PAC learning
model and its extensions. We will consider other notions of learnability in Chap-
ter 7.

3.1 PAC Learning

In the previous chapter we have shown that for a finite hypothesis class, if the
ERM rule with respect to that class is applied on a su�ciently large training
sample (whose size is independent of the underlying distribution or labeling
function) then the output hypothesis will be probably approximately correct.
More generally, we now define Probably Approximately Correct (PAC) learning.

definition 3.1 (PAC Learnability) A hypothesis class H is PAC learnable
if there exist a function mH : (0, 1)2 ! N and a learning algorithm with the
following property: For every ✏, � 2 (0, 1), for every distribution D over X , and
for every labeling function f : X ! {0, 1}, if the realizable assumption holds
with respect to H,D, f , then when running the learning algorithm on m �

mH(✏, �) i.i.d. examples generated by D and labeled by f , the algorithm returns
a hypothesis h such that, with probability of at least 1 � � (over the choice of
the examples), L(D,f)(h)  ✏.

The definition of Probably Approximately Correct learnability contains two
approximation parameters. The accuracy parameter ✏ determines how far the
output classifier can be from the optimal one (this corresponds to the “approx-
imately correct”), and a confidence parameter � indicating how likely the clas-
sifier is to meet that accuracy requirement (corresponds to the “probably” part
of “PAC”). Under the data access model that we are investigating, these ap-
proximations are inevitable. Since the training set is randomly generated, there
may always be a small chance that it will happen to be noninformative (for ex-
ample, there is always some chance that the training set will contain only one
domain point, sampled over and over again). Furthermore, even when we are
lucky enough to get a training sample that does faithfully represent D, because
it is just a finite sample, there may always be some fine details of D that it fails

Understanding Machine Learning, c� 2014 by Shai Shalev-Shwartz and Shai Ben-David
Published 2014 by Cambridge University Press.
Personal use only. Not for distribution. Do not post.
Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

From Understanding Machine Learning by Shalev-Schwartz, Ben-David



PAC Learning

From Understanding Machine Learning by Shalev-Schwartz, Ben-David

46 A Formal Learning Model

remains the same as before, namely,

LS(h)
def
=

|{i 2 [m] : h(xi) 6= yi}|

m
.

Given S, a learner can compute LS(h) for any function h : X ! {0, 1}. Note
that LS(h) = LD(uniform over S)(h).

The Goal
We wish to find some hypothesis, h : X ! Y, that (probably approximately)
minimizes the true risk, LD(h).

The Bayes Optimal Predictor.
Given any probability distribution D over X ⇥ {0, 1}, the best label predicting
function from X to {0, 1} will be

fD(x) =

(
1 if P[y = 1|x] � 1/2

0 otherwise

It is easy to verify (see Exercise 7) that for every probability distribution D,
the Bayes optimal predictor fD is optimal, in the sense that no other classifier,
g : X ! {0, 1} has a lower error. That is, for every classifier g, LD(fD)  LD(g).
Unfortunately, since we do not knowD, we cannot utilize this optimal predictor

fD. What the learner does have access to is the training sample. We can now
present the formal definition of agnostic PAC learnability, which is a natural
extension of the definition of PAC learnability to the more realistic, nonrealizable,
learning setup we have just discussed.
Clearly, we cannot hope that the learning algorithm will find a hypothesis

whose error is smaller than the minimal possible error, that of the Bayes predic-
tor.
Furthermore, as we shall prove later, once we make no prior assumptions

about the data-generating distribution, no algorithm can be guaranteed to find
a predictor that is as good as the Bayes optimal one. Instead, we require that
the learning algorithm will find a predictor whose error is not much larger than
the best possible error of a predictor in some given benchmark hypothesis class.
Of course, the strength of such a requirement depends on the choice of that
hypothesis class.

definition 3.3 (Agnostic PAC Learnability) A hypothesis class H is agnostic
PAC learnable if there exist a functionmH : (0, 1)2 ! N and a learning algorithm
with the following property: For every ✏, � 2 (0, 1) and for every distribution D

over X⇥Y , when running the learning algorithm on m � mH(✏, �) i.i.d. examples
generated by D, the algorithm returns a hypothesis h such that, with probability
of at least 1� � (over the choice of the m training examples),

LD(h)  min
h02H

LD(h
0) + ✏.





Batch Supervised Learning
• Draw data set                                                        from distribution        

• Algorithm     learns hypothesis             from set      of possible 
hypotheses  

• We measure the quality of h as the expected loss: 

• This quantity is known as the risk 

• E.g., loss could be the Hamming loss 

D

Hh 2 HA
A(D) = h

E
(x ,y)2D

[`(y , h(x))]

`Hamming(a, b) =

(
0 if a = b

1 otherwise

D = {(x1, y1), (x2, y2), ... , (xn, yn)}



Empirical Risk Minimization

• Choose a classifier (and parameter settings) to reduce empirical risk 

• Average loss of observable training set. 

• E.g., SVM, logistic regression, perceptron



Generalization Error Bound

R(h)  R̂(h) +

vuutVC(H)
⇣
log 2n

VC(H) + 1
⌘
� log �

4

n

true risk

empirical risk

Vapnik-Chervonenkis dimension (model complexity) 

size of training data

failure probability



R(h)  R̂(h) +

vuutVC(H)
⇣
log 2n

VC(H) + 1
⌘
� log �

4

n

⇡
r

complexity(H)

n

if complexity is fixed if complexity is O(n)



Vapnik-Chervonenkis Dimension
• Expressive power, or capacity, of a hypothesis class 

• Linear classifiers in d-dimensional space 

• Degree k polynomial classifiers 

• Hierarchical axis-parallel classifiers (decision trees) 

• Measured by ability of hypothesis class to shatter n points
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VC Dimension
• VC dimension of hypothesis class H: 

• Maximum number of examples that can be shattered by H 

• Examples can be arranged (feature values) in any way 

• Must be shattered in same arrangement 

• In general: linear classifier has VC dimension (d + 1)



VC Model Capacity Intuition
• How many points can this model class memorize? 

• Game view: 

• We choose placement of points 

• Adversary chooses labeling 

• Can we classify labeling? 

• Think of learning algorithm as function  
and hypothesis as a function 

• VC dimension |y| means A can output an h that can output any y

A : X ! H

h : X ! Y
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Margin
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x

x

packing points into a sphere

VC(H) = R2 wTw

doesn’t depend on 
dimensionality!

radius = R
(we’re skipping lots of details)



Generalization Error Bound

R(h)  R̂(h) +
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Summary and Thoughts
• From analysis, SVM appears to minimize VC dimension 

• but bound assumes VC dimension is fixed 

• Generalization bounds tend to be loose for real data sizes 

• Formally describe trend, but are they useful? 

• Better (tighter) bounds are certainly useful 

• But loose bounds help us formally understand properties of 
learning algorithms


