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Outline

* Probably approximately correct learning
e (Generalization bound of SVM

* Vapnik-Chervonenkis dimension (VC dimension)



PAC Learning

DEFINITION 3.1 (PAC Learnability) A hypothesis class ‘H is PAC learnable

if there exist a function and a learning algorithm with the
following property: For every , for every distribution D over X, and
for every labeling function f : X — {0,1}, if the _ holds

with respect to H,D, f, then when running the learning algorithm on m >

my (€,0) i.i.d. examples generated by D and labeled by f, the algorithm returns

a hypothesis h such that, with _ (over the choice of

From Understanding Machine Learning by Shalev-Schwartz, Ben-David



PAC Learning

DEFINITION 3.3 (Agnostic PAC Learnability) A hypothesis class H is agnostic

PAC learnable if there exist a function _and a learning algorithm
with the following property: For every_ and for every distribution D
over X X)), when running the learning algorithm on m > my (€, ) i.i.d. examples

cenerated by D, the algorithm returns a hypothesis A such that, with probability
of at least -(over the choice of the m training examples),

From Understanding Machine Learning by Shalev-Schwartz, Ben-David
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Batch Supervised Learning

* Draw data set D = {(x1, y1), (X2, ¥2), ..., (Xn, ¥n)} from distribution D

e Algorithm A learns hypothesis h € H from set H of possible
hypotheses A(D) = h

» \We measure the quality of h as the expected loss: . 5@» [4(y, h(x))]

* [his quantity is known as the risk

0 ifa=>b

 E£.9., loss could be the Hamming 10SS  /Hamming(a, b) = .
1 otherwise



Empirical Risk Minimization

 Choose a classifier (and parameter settings) to reduce empirical risk
* Average loss of observable training set.

e £.0., SVM, logistic regression, perceptron



(Generalization Error Bound

true risk

\ A VC(H) Iog VC(H) 1) — Iog 7

R(h) < R(h) + \
/ faHure probability
empirical risk
size of tralmng data

Vapnik-Chervonenkis dimension (model complexity)
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Vapnik-Chervonenkis Dimension

o EXpressive power, or capacity, of a hypothesis class
e Linear classifiers in d-dimensional space
 Degree k polynomial classifiers
e Hierarchical axis-parallel classifiers (decision trees)

 Measured by ability of hypothesis class to shatter n points
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Shattering

Classity points into all possible labels
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4 points cannot be shattered by 2d linear classitier



VC Dimension

VC dimension of hypothesis class H:

Maximum number of examples that can be shattered by H
Examples can be arranged (feature values) in any way
Must be shattered in same arrangement

In general: linear classifier has VC dimension (d + 1)



VC Model Capacity Intuition

How many points can this model class memorize”
Game view:

* \We choose placement of points

* Adversary chooses labeling

 Can we classity labeling?

Think of learning algorithm as function A: X — H
and hypothesis as a function h: X — Y

VC dimension |y| means A can output an h that can output any y



Margin

radius = R



VC(H) = R2 wTw

doesn't depend on
dimensionality!

radius = R packing points into a sphere

(we're skipping lots of details)




(Generalization Error Bound
VC(H) = R2 wTw

true risk

\ A VC(H) Iog VC(H) 1) — Iog 7

R(h) < R(h) + \
/ faHure probability
empirical risk
size of tralmng data

Vapnik-Chervonenkis dimension (model complexity)




Summary and Thoughts

 From analysis, SVM appears to minimize VC dimension

e put bound assumes VC dimension is fixed
* (Generalization bounds tend to be loose for real data sizes
 Formally describe trend, but are they useful”?

» Better (tighter) bounds are certainly useful

e But loose bounds help us formally understand properties of
learning algorithms



