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Independence

amount of dependence

independent & identically 
distributed (i.i.d.) full joint distributions

super expensive

cheap, easy, 
embarrassingly 

parallel



Outline

• Probabilistic graphical models 

• Bayesian networks 

• Naive Bayes and Logistic Regression as Bayes nets 

• Time Series Bayes Nets



Probabilistic Graphical Models

• PGMs represent probability distributions 

• They encode conditional independence structure with graphs 

• They enable graph algorithms for inference and learning



Bayesian Networks

Rain Wet Ground

Win Lottery
P(L, R, W)

= P(L) P(R) P(W | R)

Slip

P(L, R, W, S) = P(L) P(R) P(W | R) P(S | W)

P(S | W, R)

conditional 
independence structure



Bayesian Networks

Rain Wet Ground Slip

Car Wash

P(R, W, S, C) = P(R) P(C) P(W | C, R) P(S | W) P(X | Parents(X))

Wet GroundRain

Car Wash
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p(y)
5Y

i=1

p(xi |y)

p(y |x1, x2, x3, x4, x5)
5Y

i=1

p(xi )

logistic regression (with input likelihood)

naive Bayes



Gaussian Mixture Model

z

x

n

θ

𝜇

𝛴



Independence in Bayes Nets

• Each variable is conditionally independent of 
its non-descendents given its parents

• Each variable is conditionally independent of 
any other variable given its Markov blanket 

• Parents, children, and children’s parents
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General Inference: Variable Elimination
• Every variable that is not an ancestor of a query variable or evidence variable is 

irrelevant to the query. Sum out irrelevant variables. 

• Iterate:  

• choose variable to eliminate 

• sum terms relevant to variable, generate new factor 

• until no more variables to eliminate 

• Exact inference is #P-Hard 

• in tree-structured BNs, linear time (in number of table entries)



Learning in Bayes Nets

• Super easy! 

• Estimate each conditional probability 

• just like we did for naive Bayes



Bayesian Networks Summary

• Directed graph represents conditional dependence structure. 

• Each variable conditioned on parents. 

• General graph-based inference and learning algorithms



Time Series Bayes Nets
• Markov models 

• Variable elimination in Markov models 

• Forward message-passing inference 

• Hidden Markov Models 

• Forward-backward inference 

• Learning



Time Series
{x1, x2, x3, ...}



Time Series
• Goals: 

• Prediction 
 

• Filtering, smoothing  
 

?
?

?



Markov Models

p(xi , xk |xj) = p(xi |xj)p(xk |xj)

Markov assumption: the past is independent of the future given the present

i < j < k

p(x1, ... , xT ) = p(x1)
T�1Y

t=1

p(xt+1|xt)

usually parameterized with 
function independent of t



Variable Elimination
p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3) p(x4)?

p(x4) =
X

x1,x2,x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

↵2(x2) =
X

x1

p(x1)p(x2|x1)

p(x4) =
X

x2,x3

↵2(x2)p(x3|x2)p(x4|x3)

↵3(x3) =
X

x2

↵2(x2)p(x3|x2) p(x4) =
X

x3

↵3(x3)p(x4|x3)

p(x2) =

p(x3) =



Forward Message Passing
p(X ) = p(x1)

T�1Y

t=1

p(xt+1|xt)

p(xt+1) =
X

xt

p(xt)p(xt+1|xt)
for t from 1 to (T-1):



Outline
• Markov models 

• Variable elimination in Markov models 

• Forward message-passing inference 

• Hidden Markov Models 

• Forward-backward inference 

• Learning



Hidden State Transitions

submarine

?

?

?

?
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Hidden State Transitions

submarine

??



Hidden Markov Models
p(yt |xt)

p(xt |xt�1)

observation probability

transition probability submarine locomotion

SONAR noisiness

p(X ,Y ) = p(x1)
T�1Y

t=1

p(xt+1|xt)
TY

t0=1

p(yt0 |xt0)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5



Hidden State Inference
p(X |Y ) p(xt |Y )

↵t(xt) = p(xt , y1, ... , yt) �t(xt) = p(yt+1, ... , yT |xt)

↵t(xt)�t(xt) = p(xt , y1, ... , yt)p(yt+1, ... , yT |xt) = p(xt ,Y ) / p(xt |Y )

normalize to get conditional probability

note: not the same as p(x1, ... , xT ,Y )



Forward Inference

p(x1, y1) = p(x1)p(y1|x1)

p(x2, y1, y2) =
X

x1

p(x1, y1)p(x2|x1)p(y2|x2) = ↵2(x2) =
X

x1

↵1(x1)p(x2|x1)p(y2|x2)

= ↵1(x1)

↵t(xt) = p(xt , y1, ... , yt)

p(xt+1, y1, ... , yt+1) = ↵t+1(xt+1) =
X

xt

↵t(xt)p(xt+1|xt)p(yt+1|xt+1)



Backward Inference
�t(xt) = p(yt+1, ... , yT |xt)

p({}|xT ) = 1 = �T (xT )

�t�1(xt�1) = p(yt , ... , yT |xt�1) =
X

xt

p(xt |xt�1)p(yt , yt+1, ... , yT |xt)

=
X

xt

p(xt |xt�1)p(yt |xt)p(yt+1, ... , yT |xt)

=
X

xt

p(xt |xt�1)p(yt |xt)�t(xt)



Backward Inference
�t(xt) = p(yt+1, ... , yT |xt)

p({}|xT ) = 1 = �T (xT )

�t�1(xt�1) = p(yt , ... , yT |xt�1) =
X

xt

p(xt |xt�1)p(yt |xt)�t(xt)



Fusing the Messages
↵t(xt) = p(xt , y1, ... , yt) �t(xt) = p(yt+1, ... , yT |xt)

↵t(xt)�t(xt) = p(xt , y1, ... , yt)p(yt+1, ... , yT |xt) = p(xt ,Y ) / p(xt |Y )

p(xt , xt+1|Y )

=
p(xt , y1, ... , yt)p(xt+1|xt)p(yt+2, ... , yT |xt+1)p(yt+1|xt+1)P

xT
p(xt ,Y )

=
p(xt , xt+1, y1, ... , yt , yt+1, yt+2, ... , yT )

p(Y )

=
↵t(xt)p(xt+1|xt)�t+1(xt+1)p(yt+1|xt+1)P

xT
↵T (xT )



Forward-Backward Inference
↵1(x1) = p(x1)p(y1|x1) ↵t+1(xt+1) =

X

xt

↵t(xt)p(xt+1|xt)p(yt+1|xt+1)

�T (xT ) = 1 �t�1(xt�1) =
X

xt

p(xt |xt�1)p(yt |xt)�t(xt)

p(xt ,Y ) = ↵t(xt)�t(xt) p(xt |Y ) =
↵t(xt)�t(xt)P
x0
t
↵t(x 0t)�t(x 0t)

p(xt , xt+1|Y ) =
↵t(xt)p(xt+1|xt)�t+1(xt+1)p(yt+1|xt+1)P

xT
↵T (xT )



Normalization

↵̃t(xt) =
↵t(xt)P
x0
t
↵t(x 0t)

�̃t(xt) =
�t(xt)P
x0
t
�t(x 0t)

To avoid underflow, re-normalize at each time step

(Normalization cancels out.)



Learning
• Parameterize and learn  
 
 

• If fully observed, super easy! 

• If x is hidden (most cases) treat as latent variable 

• E.g., expectation maximization

p(xt+1|xt) p(yt |xt)

conditional probability table 
transition matrix 

observation model 
emission model



Maximize weighted (expected) log-likelihood

EM (Baum-Welch) Details
p(xt |Y )Compute using forward-backwardp(xt , xt+1|Y )and

p(x1) 
1

T

TX

t=1

p(xt |Y ) p(x1|Y )or

p(xt0+1 = i |xt0 = j) 
PT�1

t=1 p(xt+1 = i , xt = j |Y )
PT�1

t=1 p(xt = j |Y ) p(y |x) 
PT

t=1 p(xt = x |Y )I (yt = y)
PT

t0=1 p(xt = x |Y )

e.g., multinomial

e.g., Gaussian

µx  
PT

t=1 p(xt = x |Y )ytPT
t0=1 p(xt = x |Y )



Time Series Bayes Net Summary
• MMs model state transitions 

• HMMs represent hidden states 

• Transitions between adjacent states, observation based on states 

• Forward-backward inference to incorporate all evidence 

• Expectation maximization to train parameters (Baum-Welch) with 
latent state variables


