
Final Project: Reproduce One Result of ”Understanding
Deep Learning Requires Rethinking Generalization”

In this project, I attempted to reproduce and confirm the zero training loss with random
labels given other neural network architectures and other datasets that inspired by Un-
derstanding Deep Learning Requires Rethinking Generalization. Zhang et.

Summary of the Results From Original Paper

In the paper, Understanding Deep Learning Requires Rethinking Generalization,
Chiyuan Zhang and his colleagues deployed a number of systematic experiments to ex-
hibit the traditional view of generalization, i.e., difference between training error and test
error, is incapable to distinguish between different neural networks that have remarkably
different generalization performance. The author established the convolutional networks
and trained that on a copy of the data (image set) in which the true labels were replaced
by random labels. Although there was no relationship between the data and the class
labels, training on random labeling of the true data exhibited zero training error. Indeed,
a varying level of label corruption from no corruption to complete random labels on the
datasets was deployed on the neural network training, the networks still fitted the cor-
rupted training set perfectly at all cases. Such a result implies that the increase of the
generalization error of the model can be done by randomizing the labels without making
any other change.

Moreover, the experiment of replacing the images by random pixels like Gaussian
noise with different levels of the randomization would achieve the same results. However,
increasing the noise level resulted in a steady deterioration of the generalization error
without explicit regularizers. Even though it didnt reach the perfect 100% top-1 accuracy,
the network still managed to reach around 90% top-1 accuracy. In contrast to the neural
networks with random labels, the training with random pixels and Gaussian converges to
the solution faster. The reason behind this phenomenon might be the input with random
pixels are more separated and easier to build a network for arbitrary label assignments.

Through the extensive experiment, the authors also showed that the explicit forms
of regularization, such as weight decay, and dropout, may improve generalization error
of neural networks. In details, the use of data augmentation and weight decay help to
improve the generalization performance of Inception, Alexnet, and MLPs, but these mod-
els still generalize very well with all of the regularizers turned off. Although there is a
10 accuracy drop when turning off all the regularizers, the authors supposed that bigger
gains can be achieved by changing the model architecture. So, the regularizer is either
unnecessary or insufficient for controlling generalization error. Furthermore, the explicit
regularization appears to be more of a tuning parameter that often helps improve the final
testing error.

The authors empirical observation with a theoretical construction also showed that
generically large neural networks are capable to express any labeling of training data.
Indeed, a very two-layer ReLu network with p=2n+d parameters is capable to express

1



any labeling of any sample of size n in d dimensions. The result of this observation even
exhibited that the depth-2 networks of linear size are capable to express any labeling of
the training data.

In contrast to the role of explicit regularization, the stochastic gradient descent played
an important role in the generalization of the models that didnt fit the data well. Out of all
models that exactly fitted the data, the experiments showed that the SGD would always
converge to a solution with a small norm for a linear model. Without preprocessing, al-
though the model could still fit the data, the testing error was remarkably larger than the
one with preprocessing. Hence, the linear model that was trained using SGD performed a
better generalization error compared to other algorithms. However, the authors revealed
that Gaussian kernel methods can generalize well with no regularization on small data
sets. As a result, the author concluded that the notion of the minimum norm is not pre-
dictive of generalization performance. Even though the minimum-norm intuition may
provide some guidance to new algorithm design, it still cant cover the full story of the
generalization.

In conclusion, the authors emphasize the effective capacity of several successful neural
network architectures and these models are capable to memorize the training data. The
authors also excluded the reasons for why optimization is empirically easy from the true
cause of generalization.

Procedure for Reproducing the Result

To achieve the purpose mentioned at the beginning, reproducing the result of fitting
the random labels and pixels, I used a commonly used successfully model, Wide
Resnet, and train that on random labels on the CIFAR10 dataset. The features of
Wide Resnet took me some time to overview. The code I used is adapted from
https://github.com/pluskid/fitting-random-labels. However, because the last commit
the author made was 2 years ago, so I solved several problems in the process of run-
ning the code. Additionally, because the author only provided CIFAR10 dataset in his
code, I also made some modifications in his codes and implement other python scripts to
allow the Wide Resnet model to train on other different datasets. Since every dataset un-
der torchvision.dataset has different parameters and attributes, I also investigated their
characteristics and made the corresponding changes to attempt to fit them in the codes.
The final repository of the code I used to reproduce the result of the original below is
https://github.com/ShuuTsubaki/fitting-random-labels.

Coding Experiences

C1. When I tried to run the command to train the Wide Resnet model with true labels,
python train,py, the following problem occurred,

losses.update(loss.data[0], input.size(0))

top1.update(prec1[0], input.size(0))

2

https://github.com/ShuuTsubaki/fitting-random-labels


IndexError: invalid index of a 0-dim tensor. Use tensor.item() to convert a

0-dim tensor to a Python number

That is because in PyTorch >= 0.5, the index of 0-dim tensor is invalid. So, I changed to

top1.update(prec1, input.size(0))

losses.update(loss.data, input.size(0))

C2. When I tried to train the Wide Resnet model with random labels, the following prob-
lem occurred,

labels = np.array(self.train_labels if self.train else self.test_labels)

AttributeError: ’CIFAR10RandomLabels’ object has no attribute ’train_labels’

I investigated the source code for torchvision.dataset.cifar, it seemed like the torchvision
removed the attributes named train labels and test labels in its past updates, so I made
the following changes in cifar10 data.py,

if self.train:

self.train_labels = self.targets

else:

self.test_labels = self.targets

C3. In order to train the Wide Resnet on a CIFAR100 dataset, I added a script named ci-
far100 data.py and made some modification on the cmd args.py and train.py. In contrast
to CIFAR10 dataset, it has 100 classes containing 600 images each. There are 500 training
images and 100 testing images per class. So the number of the classes in the argument has
to set to 100. Otherwise, the following error would occur,

RuntimeError: cuda runtime error (59) : device-side assert triggered at

C:/w/1/s/tmp_conda_3.7_055306/conda/conda-bld/pytorch_1556690124416/

work/aten/src/ATen/native/cuda/SoftMax.cu:620

C5. Because I didn’t have enough GPU computing resource to run my proposed exper-
iments, I used Google Colaboratory to run these experiments, but I frequently experi-
enced the problem of network error and reconnection request. The running time of every
experiment also took longer than I expected. However, I wrote a ipython notebook for
running these scripts, the copy of this notebook and its outputs are attached in the repos-
itory, https://github.com/ShuuTsubaki/fitting-random-labels/blob/master/final_
project.ipynb.
C4. To take the advantage of data visualization, I also implemented the script that
can plot the training loss and testing loss over the number of iterations with a varying
level of label corruption from no corruption to complete random labels on the datasets.
https://github.com/ShuuTsubaki/fitting-random-labels/blob/master/plot.py

3

https://github.com/ShuuTsubaki/fitting-random-labels/blob/master/final_project.ipynb
https://github.com/ShuuTsubaki/fitting-random-labels/blob/master/final_project.ipynb
https://github.com/ShuuTsubaki/fitting-random-labels/blob/master/plot.py


Measurements and Analysis of the Reproduced Results

The following outputs are from my colab run for Wide Resnet on the original CIFAR-10 :
(the outputs are partially hidden due to space constraint, if there is a need, the reader can
be refer to the ipython notebook in Github mentioned above)

000: Acc-tr: 61.60, Acc-val: 61.05, L-tr: 1.0634, L-val: 1.0958

001: Acc-tr: 69.36, Acc-val: 66.62, L-tr: 0.8749, L-val: 0.9485

002: Acc-tr: 71.29, Acc-val: 68.66, L-tr: 0.8570, L-val: 0.9382

003: Acc-tr: 76.68, Acc-val: 72.94, L-tr: 0.6839, L-val: 0.8149

004: Acc-tr: 82.17, Acc-val: 77.22, L-tr: 0.5168, L-val: 0.6744

005: Acc-tr: 83.92, Acc-val: 77.87, L-tr: 0.4650, L-val: 0.6476

...

145: Acc-tr: 95.87, Acc-val: 80.69, L-tr: 0.1193, L-val: 0.7876

146: Acc-tr: 96.07, Acc-val: 80.67, L-tr: 0.1145, L-val: 0.8287

147: Acc-tr: 94.66, Acc-val: 80.08, L-tr: 0.1553, L-val: 0.9099

...

200: Acc-tr: 100.00, Acc-val: 85.93, L-tr: 0.0005, L-val: 0.5978

201: Acc-tr: 100.00, Acc-val: 85.94, L-tr: 0.0004, L-val: 0.5970

...

299: Acc-tr: 100.00, Acc-val: 86.11, L-tr: 0.0004, L-val: 0.5787

The following outputs are from my colab run for Wide Resnet on the CIFAR-10 with
partially corrupted labels (0.5):

000: Acc-tr: 58.58, Acc-val: 57.12, L-tr: 1.1676, L-val: 1.2036

001: Acc-tr: 66.53, Acc-val: 64.70, L-tr: 0.9566, L-val: 1.0202

002: Acc-tr: 70.45, Acc-val: 68.72, L-tr: 0.8370, L-val: 0.9127

003: Acc-tr: 77.64, Acc-val: 73.70, L-tr: 0.6330, L-val: 0.7729

004: Acc-tr: 78.71, Acc-val: 74.04, L-tr: 0.5942, L-val: 0.7472

005: Acc-tr: 84.93, Acc-val: 79.04, L-tr: 0.4287, L-val: 0.6256

...

145: Acc-tr: 95.70, Acc-val: 80.39, L-tr: 0.1224, L-val: 0.8589

146: Acc-tr: 97.42, Acc-val: 82.07, L-tr: 0.0744, L-val: 0.7459

147: Acc-tr: 94.01, Acc-val: 78.87, L-tr: 0.1819, L-val: 0.9050

...

200: Acc-tr: 100.00, Acc-val: 86.73, L-tr: 0.0005, L-val: 0.5697

201: Acc-tr: 100.00, Acc-val: 86.81, L-tr: 0.0005, L-val: 0.5672

...

299: Acc-tr: 100.00, Acc-val: 86.95, L-tr: 0.0004, L-val: 0.5524

The following outputs are from my colab run for Wide Resnet on the CIFAR-10 with
random labels:

000: Acc-tr: 59.89, Acc-val: 59.01, L-tr: 1.1491, L-val: 1.1794

001: Acc-tr: 70.86, Acc-val: 68.70, L-tr: 0.8266, L-val: 0.8940

4



002: Acc-tr: 73.00, Acc-val: 71.16, L-tr: 0.7782, L-val: 0.8674

003: Acc-tr: 78.26, Acc-val: 74.35, L-tr: 0.6163, L-val: 0.7423

004: Acc-tr: 80.07, Acc-val: 75.50, L-tr: 0.5830, L-val: 0.7591

005: Acc-tr: 83.93, Acc-val: 78.48, L-tr: 0.4606, L-val: 0.6633

...

145: Acc-tr: 95.96, Acc-val: 80.80, L-tr: 0.1164, L-val: 0.8132

146: Acc-tr: 97.01, Acc-val: 81.85, L-tr: 0.0854, L-val: 0.7278

147: Acc-tr: 95.85, Acc-val: 81.02, L-tr: 0.1245, L-val: 0.7798

...

200: Acc-tr: 100.00, Acc-val: 86.37, L-tr: 0.0005, L-val: 0.5744

201: Acc-tr: 100.00, Acc-val: 86.31, L-tr: 0.0004, L-val: 0.5744

...

299: Acc-tr: 100.00, Acc-val: 86.34, L-tr: 0.0004, L-val: 0.5579

Based on the output I got from above, I used plot.py to visualize the measurements.

Figure above shows the training loss of various experiment settings decaying with the
epoch iteration. Similar to the result Zhang and his colleagues found in the original paper,
we see that Wide Resnet still converges to zero loss on the CIFAR10 training set. Although

5



the label assignments for every training sample is uncorrelated, the predictions errors are
still back-propagated to make the gradients for parameter update. We can find that once
the model starts to fit the data, it converges very quickly, and it converges to overfit the
training set extremely well.

We can observe the test errors after convergence from figure above . With a varying
level of label corruptions from 0 (no corruption) to 0.5 (partially corrupted) and then to 1
(complete random labels) on the CIFAR10 dataset, the test errors converge to around 0.6%.
Since the training errors are zero as previous figure showed, the test errors can treat as
the generalization errors. These errors refer the accuracy of the model in different setting
are approached to around 100%.
I also trained the Wide Resnet on CIFAR100. The following outputs are from my colab
run for Wide Resnet on the original CIFAR-100 :

000: Acc-tr: 13.67, Acc-val: 13.76, L-tr: 3.5994, L-val: 3.6218

001: Acc-tr: 24.23, Acc-val: 23.52, L-tr: 2.9807, L-val: 3.0470

002: Acc-tr: 34.88, Acc-val: 33.03, L-tr: 2.4689, L-val: 2.5765

003: Acc-tr: 39.30, Acc-val: 35.72, L-tr: 2.2313, L-val: 2.3935

004: Acc-tr: 46.16, Acc-val: 42.21, L-tr: 1.9556, L-val: 2.1615

6



005: Acc-tr: 43.94, Acc-val: 39.20, L-tr: 2.0877, L-val: 2.3665

...

145: Acc-tr: 85.59, Acc-val: 49.44, L-tr: 0.4463, L-val: 2.5971

146: Acc-tr: 86.78, Acc-val: 48.92, L-tr: 0.4044, L-val: 2.5993

147: Acc-tr: 80.33, Acc-val: 47.41, L-tr: 0.6356, L-val: 2.9195

...

200: Acc-tr: 99.98, Acc-val: 56.77, L-tr: 0.0043, L-val: 2.2184

201: Acc-tr: 99.98, Acc-val: 56.85, L-tr: 0.0044, L-val: 2.2044

...

299: Acc-tr: 99.98, Acc-val: 56.58, L-tr: 0.0042, L-val: 2.1633

The following outputs are from my colab run for Wide Resnet on the CIFAR-100 with
partially corrupted labels (0.5):

000: Acc-tr: 13.32, Acc-val: 12.92, L-tr: 3.6161, L-val: 3.6413

001: Acc-tr: 22.13, Acc-val: 21.40, L-tr: 3.0710, L-val: 3.1265

002: Acc-tr: 32.19, Acc-val: 30.62, L-tr: 2.5748, L-val: 2.6697

003: Acc-tr: 38.82, Acc-val: 35.94, L-tr: 2.2633, L-val: 2.4102

004: Acc-tr: 41.11, Acc-val: 37.56, L-tr: 2.1685, L-val: 2.3834

005: Acc-tr: 44.82, Acc-val: 40.05, L-tr: 2.0458, L-val: 2.3138

...

145: Acc-tr: 84.40, Acc-val: 49.30, L-tr: 0.4894, L-val: 2.8438

146: Acc-tr: 80.95, Acc-val: 47.19, L-tr: 0.6159, L-val: 2.8634

147: Acc-tr: 83.93, Acc-val: 47.92, L-tr: 0.5030, L-val: 2.7608

...

200: Acc-tr: 99.98, Acc-val: 56.26, L-tr: 0.0043, L-val: 2.2122

201: Acc-tr: 99.98, Acc-val: 56.33, L-tr: 0.0043, L-val: 2.2106

...

299: Acc-tr: 99.98, Acc-val: 55.66, L-tr: 0.0040, L-val: 2.1789

The following outputs are from my colab run for Wide Resnet on the CIFAR-100 with
random labels:

000: Acc-tr: 12.49, Acc-val: 11.81, L-tr: 3.6397, L-val: 3.6806

001: Acc-tr: 21.73, Acc-val: 21.02, L-tr: 3.1562, L-val: 3.2268

002: Acc-tr: 33.57, Acc-val: 31.69, L-tr: 2.4840, L-val: 2.5858

003: Acc-tr: 37.39, Acc-val: 35.16, L-tr: 2.3291, L-val: 2.4836

004: Acc-tr: 44.69, Acc-val: 40.47, L-tr: 2.0008, L-val: 2.2160

005: Acc-tr: 47.11, Acc-val: 42.46, L-tr: 1.9040, L-val: 2.1540

...

145: Acc-tr: 84.81, Acc-val: 48.82, L-tr: 0.4663, L-val: 2.7377

146: Acc-tr: 80.34, Acc-val: 46.15, L-tr: 0.6262, L-val: 2.9115

147: Acc-tr: 79.73, Acc-val: 45.39, L-tr: 0.6896, L-val: 3.2918

...

200: Acc-tr: 99.98, Acc-val: 56.22, L-tr: 0.0043, L-val: 2.2214

201: Acc-tr: 99.98, Acc-val: 56.19, L-tr: 0.0042, L-val: 2.2231

7



...

299: Acc-tr: 99.98, Acc-val: 55.58, L-tr: 0.0039, L-val: 2.1891

Based on the output I got from above, I used plot.py to visualize the measurements.

From the figure , we can see the behavior of the model trained on the CIFAR10 dataset
also occur on the CIFAR100 dataset. The training errors with different levels of label
corruptions dramatically decrease in first 50 epochs and begin to converge very quickly.
Finally, they converge to zero and fit the training set perfectly.

8



From the figure , we can see that even though the testing errors are bumped up in a
number of epochs, they still dramatically converge to around 2.0% with different settings.
The performance of random guessing on CIFAR 100 is as good as the performance of the
model with true labels.

In conclusion, given the Wide Resnet model with CIFAR100, we can still observe that
the model achieves the zero training loss with different levels of label corruptions (0, 0.5,
and 1). Hence, we successfully reproduced the result and can confirm that there is also
zero training loss with random labels given other neural network architectures and other
datasets.

Reference

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. International Conference on
Learning Representations (ICLR), 2017. https://arxiv.org/abs/1611.03530.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. In ICML, 2016.

9

https://arxiv.org/abs/1611.03530


Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: risk
bounds and structural results. Journal of Machine Learning Research, 3:463482, March
2003.

10


