Today’s Topics

• Constraint Satisfaction Problems (CSP)
Recap

• CSP
 – X is a set of Variables
 – D is a set of Domains, one for each variable and consist of a set of allowable values
 – C is a set of Constraints that specify allowable combinations of values
• An assignment that fulfills all constraints is called a consistent or legal assignment
• A complete assignment is that every variable is assigned a value
• A solution to a CSP is a consistent, complete assignment
• K-consistency
 – 1-consistency: Node consistency
 – 2-consistency: Arc consistency
 – 3-consistency: Path consistency
• Global Constraint
Backtracking Search

• Basic uninformed algorithm for solving CSPs

• One variable at a time
 – Variable assignments are commutative (WA = red and NT = blue is the same as NT = blue, WA = red)
 – The order of any given set of actions does not matter
 – Only need to consider assignments to a single variable at each step

• Check constraints as you go
 – Select values that don’t conflict with any previously assigned values (assignments)
 – If no such value exist, backtrack and return to the previous variable and change its value
 – Might need computation to check the constraints

• DFS with above two improvements is called backtracking search
Backtracking Example
Backtracking Search Algorithm

- **Backtracking** = DFS + Variable-ordering + Fail-on-violation
- **Select-unassigned-variable** and **order-domain-values** implement the general-purpose heuristics
- **Inference** imposes forward checking, arc-, path-, or k-consistency

```plaintext
function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
    if value is consistent with assignment then
        add \{var = value\} to assignment
        inferences ← INERENCE(csp, var, assignment)
        if inferences ≠ failure then
            add inferences to csp
            result ← BACKTRACK(csp, assignment)
            if result ≠ failure then return result
            remove inferences from csp
        remove \{var = value\} from assignment
    return failure
```
Inference

• AC-3 can reduce the domains of variables before the search
• Inference: Infer new domain reductions on the neighboring variables every time when making a choice of a value for a variable
• Forward checking:
 – One of the simplest forms of inference
 – When a variable X is assigned, for each unassigned variable Y that is connected to X by a constraint, delete any value in Y’s domain that is inconsistent with the value chosen for X
Forward Checking

• When a variable X is assigned, for each unassigned variable Y that is connected to X by a constraint, delete any value in Y’s domain that is inconsistent with the value chosen for X
Improving Backtracking

• General-purpose ideas give huge gains in speed
• Better ordering
 – Which variable should be assigned next?
 – Which value should be tried first?
• Filtering: Can we detect failure early?
• Structure: Can we exploit the problem structure?
Ordering

• **Minimum Remaining Values (MRV)** heuristic: Choose the *variable* with the fewest legal left values in its domain
 – “Most constrained variable” heuristic
 – “Fail-first” heuristic

• **Degree** heuristic: Select the variable that is involved in the largest # of constraints

• **Least Constraining Value (LCV)** heuristic: Choose the *value* that rules out the fewest choices for the neighboring variables in the constraint graph
 – “Fail-last” heuristic
Forward checking

• Forward checking + MRV: After assigned {WA = red}, what next? NT or SA

• Maintaining Arc Consistency (MAC):
 – Variable X_i is assigned a value
 – Inference procedure calls AC-3
 – Only the arcs (X_j, X_i) for all X_j that are unassigned variables that are neighbors of X_i are stored in the queue
 – More strict than forward checking
Local Search

• Find a good state without worrying about the path to get there

• Iterative improvement
 – Start with some random assignment to values
 – Iteratively select a random conflicted variable and reassign its value to the one that violates the fewest constraints until no more constraint violations exist

• A policy known as the min-conflicts heuristic

• Generally much faster and more memory efficient (but incomplete and suboptimal)
Min-conflicts heuristic

h = 5 → h = 2 → h = 0
Hill Climbing Search

- Most basic local search technique
- At each step, the current node is replaced by the best neighbor
- Greedy local search

function HILL-CLIMBING(\textit{problem}) \textbf{returns} a state that is a local maximum

\textit{current} ← \textit{problem}.\text{INITIAL}

\textbf{while} true \textbf{ do}

\hspace{1em} \textit{neighbor} ← a highest-valued successor state of \textit{current}

\textbf{if} \text{VALUE(neighbor)} \leq \text{VALUE(current)} \textbf{then} \textbf{return} \textit{current}

\hspace{1em} \textit{current} ← \textit{neighbor}
Hill Climbing Diagram

- Global maximum: The highest peak.
- Local maximum: Higher than its neighboring state but lower than the global maximum.
- Plateaus: A flat area of the state-space landscape.
 - A flat local maximum: No uphill exit exists.
 - Shoulder: It is a plateau that has an uphill edge.
- Current state: The region of state space diagram where we are currently present during the search.
Simulated annealing

- Escape local maximum by allowing downhill move
- If temperature T decreased slowly enough, then a property of the Boltzmann distribution, $e^{-\Delta E/T}$, is concentrated on the global maxima

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    current ← problem.INITIAL
    for $t = 1$ to $\infty$ do
        $T ← schedule(t)$
        if $T = 0$ then return current
        next ← a randomly selected successor of current
        $\Delta E ← VALUE(current) − VALUE(next)$
        if $\Delta E > 0$ then current ← next
        else current ← next only with probability $e^{-\Delta E/T}$
```
MIN-CONFLICTS local search algorithm for CSPs

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen conflicted variable from csp.VARIABLES
 value ← the value v for var that minimizes CONFLICTS(csp, var, v, current)
 set var = value in current
return failure
Program Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of the constraint graph
- General CSPs, where worst-case time is $O(d^n)$, n variables and d domains
- Assume a graph of n variables can be broken into subproblems of only c variables:
 - worst-case is $O((n/c)d^c)$, linear in n
 - E.g. $n = 100$, $d = 3$, $c = 20$
 - 3^{100} vs $(5)^{3^{20}}$
Tree-Structured CSP

- One that has no loops in its constraint graph
- We can reduce the runtime from $O(d^n)$ to $O(nd^2)$
- Topological sort
TREE-CSP-SOLVER algorithm

function TREE-CSP-SOLVER(csp) returns a solution, or failure
inputs: csp, a CSP with components X, D, C

n ← number of variables in X
assignment ← an empty assignment
root ← any variable in X
X ← TOPOLOGICALSORT(X, root)

for j = n down to 2 do
 MAKE-ARC-CONSISTENT(PARENT(X_j), X_j)
 if it cannot be made consistent then return failure

for i = 1 to n do
 assignment[X_i] ← any consistent value from D_i
 if there is no consistent value then return failure

return assignment
Tree-Structured CSP Algorithm

- **Order:** Choose a root variable, order variables so that parents precede children (Topological sort)

- **Backward pass** of arc consistency: For \(j = n \) down to 2, apply make-arc-consistent(\(\text{Parent}(X_j), X_j \))

- **Assign forward:** For \(i = 1 \) to \(n \), assign \(X_i \) consistently with \(\text{Parent}(X_i) \)
Improving Structure

- Idea: Reduce general constraint graphs to trees
- Remove nodes: Cutset conditioning
- Collapse nodes together: Tree decomposition
Cutset Conditioning

- Choose a subset S of the CSP’s variables such that the constraint graph becomes a tree after removing S (cycle cutset). Usually the smallest subset.

- For each possible assignment to the S that satisfies all constraints on S
 - Remove any values that are inconsistent with the assignment for S from the domains of the remaining variables.
 - If there is a solution, return it together with the assignment for S.

- Runtime $O(d^c(n-c)d^2)$.
Tree Decomposition

• Every variable in the original problem appears in at least one of the tree nodes
• If two variables are connected by a constraint in the original problem, they must appear together (along with the constraint) in at least one of the subproblems
• If a variable appears in two nodes in the tree, it must appear in every node along the path connecting those nodes
• Runtime $O(nd^2)$ with Tree-CSP-Solver
Summary

- CSPs are a special kind of search problem
 - States are partial assignments
 - Goal test defined by constraints

- X is a set of Variables

- D is a set of Domains, one for each variable and consist of a set of allowable values

- C is a set of Constraints that specify allowable combinations of values
Summary

- CSPs are represented as Constraint Graphs
- Node is Variable
- Edge: Connects any two nodes that participate in a constraint
- Unary constraint: restricts the value of a single variable \(<SA), SA \neq \text{green}\>
- Binary constraint: two variables. \(SA \neq NT\)
- Binary CSP: each constraint relates (at most) two variables
- Higher-order Constraints: Constraints involving three or more variables can also be represented with edges in a CSP graph
Summary

• Backtracking search: Basic uninformed algorithm for solving CSPs
• Inference:
 – Forward Checking
 – Arc Consistency
• Value ordering
 – Minimum Remaining Values (MRV)
 – Degree
 – Least Constraining Value (LCV)
• Local search: min-conflicts heuristic
• Structure:
 – Tree structured CSP
 – Cutset Conditioning
 – Tree Decomposition
CSP Quiz

• In a general CSP with \(n \) variables, each taking \(d \) possible values, what is the maximum number of times a backtracking search algorithm might have to backtrack before finding a solution or no solution exist?

• What is the maximum number of times a backtracking search algorithm might have to backtrack in a general CSP, if it is running \(arc \) consistency and applying the MRV and LCV heuristics?

• What is the maximum number of times a backtracking search algorithm might have to backtrack in a tree-structured CSP, if it is running \(arc \) consistency and using an optimal variable ordering?
Reading and Next Class

• CSP: AIMA 6.3 – 6.5
• Next: Propositional Logic: AIMA 7