Today’s Topics

• Game
• Adversarial search
Informed Search Recap

1. Is A* graph search guaranteed to return an optimal solution?
2. Is A* graph search guaranteed to expand no more nodes than uniform-cost graph search?
3. Is Greedy graph search guaranteed to return an optimal solution?
4. Let $h_1(s)$ be an admissible A* heuristic. Let $h_2(s) = 2h_1(s)$
 a. Is the solution found by A* tree search with h_2 guaranteed to have a cost at most twice as much as the optimal path?
 b. Is the solution found by A* graph search with h_2 guaranteed to be an optimal solution?
Agent has adversaries

Image from: battle vs chess
Game

- Chess: 1997 - Deep Blue defeated Gary Kasparov
- Checkers: 2007 Checkers was solved.
- Go: 2016 ALPHAGOGO
- StarCraft II: 2019 ALPHASTAR
- ...
Types of Games

- Deterministic or stochastic?
- One, two, or more players?
- Zero Sum?
- Perfect information?
 - (fully observable or not)
- Example:
 - Chess is a deterministic, two-player, turn-taking, perfect information, and zero-sum game.
 - StarCraft II is a deterministic, multi-player, real-time, partial observable, and zero-sum game
Zero-Sum Games

- Agents have opposite utilities
- Agent MAX vs Agent MIN
 - MAX: Maximize the (value, points, scores)
 - MIN: Minimize the (value, points, scores)
- Pure competition
- Adversarial
- Example: Chess, GO, Clash Royale, etc.
Definition of Two-player Zero-Sum Game

• States: \(S \). Start at \(S_0 \) (initial state)
• To-Move(s): to move in state \(s \)
• Action(s): the set of legal moves in state \(s \)
• Result(s, a): The transition model. The state resulting from taking action \(a \) in state \(s \)
• Is-Terminal(s): A terminal test. Game over?
 – Terminal states: States where the game has ended
• Utility(s, \(p \)): A utility function which defines the final number value to player \(p \) when the game ends in terminal state \(s \)
Tic-Tac-Toe Game Tree

MAX (x)

MIN (o)

MAX (x)

MIN (o)

TERMINAL

Utility: -1, 0, +1
Adversarial Game Tree

• Deterministic, zero-sum games:
 – Tic-tac-toe, chess, go, etc.
 – One player maximizes result
 – The other player minimizes result

• Example: Two-ply game tree:
 – A state-space search tree
 – Players (MAX, MIN) alternate turns (ply)
 – Compute minimax value of each node in the tree and select best (achievable) utility against adversary
Two-ply Game Tree
Minimax

\[
\text{MINIMAX}(s) = \\
\begin{cases}
\text{UTILITY}(s) & \text{if \ TERMINAL-TEST}(s) \\
\max_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if \ PLAYER}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if \ PLAYER}(s) = \text{MIN}
\end{cases}
\]
Minimax Search Algorithm

- DFS
- Time complexity: \(O(b^m)\)
- Space complexity: \(O(bm)\)

```plaintext
function MINIMAX-SEARCH(game, state) returns an action
    player ← game.TO-MOVE(state)
    value, move ← MAX-VALUE(game, state)
    return move

function MAX-VALUE(game, state) returns a (utility, move) pair
    if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
    v ← −∞
    for each a in game.ACTIONS(state) do
        v2, a2 ← MIN-VALUE(game, game.RESULT(state, a))
        if v2 > v then
            v, move ← v2, a
    return v, move

function MIN-VALUE(game, state) returns a (utility, move) pair
    if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
    v ← +∞
    for each a in game.ACTIONS(state) do
        v2, a2 ← MAX-VALUE(game, game.RESULT(state, a))
        if v2 < v then
            v, move ← v2, a
    return v, move
```
Another Example
Game Tree Pruning

- Chess: branching factor $b \approx 35$, ply ≈ 80. $35^{80} \approx 10^{123}$
- We don’t need to explore the whole game tree!
Alpha-Beta Pruning

• General principle:
 – A player has a choice of moving to n
 – However, m’ is a better choice for player. Player choice m’
 – Or m is a better choice for player. Player choice m
 – Player will never move to n. So, we can **prune** it.
Alpha-Beta Pruning

- Can be applied to trees of any depth
- Prune entire subtrees or leaves
- α : MAX’s best choice we have found along the path
- β : MIN’s best choice we have found along the path
function ALPHA-BETA-SEARCH(game, state) returns an action
player ← game.To-MOVE(state)
value, move ← MAX-VALUE(game, state, −∞, +∞)
return move

function MAX-VALUE(game, state, α, β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v ← −∞
for each a in game.ACTIONS(state) do
 v2, a2 ← MIN-VALUE(game, game.RESULT(state, a), α, β)
 if v2 > v then
 v, move ← v2, a
 α ← MAX(α, v)
 if v ≥ β then return v, move
return v, move
function MIN-VALUE(game, state, \(\alpha, \beta\)) returns a (utility, move) pair
 if game.IS-TERMIAL(state) then return game.UTILITY(state, player), null
 \(v \leftarrow +\infty\)
 for each \(a\) in game.ACTIONS(state) do
 \(v_2, a_2 \leftarrow \text{MAX-VALUE}(game, game.RESULT(state, a), \alpha, \beta)\)
 if \(v_2 < v\) then
 \(v, \text{move} \leftarrow v_2, a\)
 \(\beta \leftarrow \text{MIN}(\beta, v)\)
 if \(v \leq \alpha\) then return \(v, \text{move}\)
 return \(v, \text{move}\)
Alpha-Beta Pruning Properties

- State can be pruned because it makes no difference to the outcome (minimax value for the root)
- Effectiveness is highly dependent on the child ordering
- With **perfect** ordering:
 - Time complexity drop from $O(b^m)$ to $O(b^{m/2})$
 - Double solvable depth
- Random move ordering is about $O(b^{3m/4})$
Demo

- Minimax
- Alpha-Beta pruning
- Iterative Deepening
- Demo
Another Example

```
      Max
     /   \
Min    \
/     \
5      x
      /   \
     2    6
```

VT

Virginia Tech
Resource Limits

• Resource is limit, game tree is way too big! $35^{80} \approx 10^{123}$

• Solution:
 – Use a heuristic evaluation function
 – Replace the UTILITY function with EVAL
 – Terminal test \rightarrow Cutoff test
 – Search only a limited depth in the tree (Depth-limited search)

• Cutoff test
 – Return true for terminal states
 – Decide to cut off the search
Shannon’s Strategies

• Type A strategy
 – Consider only a certain depth in the search tree
 – Use EVAL to estimate the utility
 – Explores a wide but shallow portion of the tree

• Type B strategy
 – Ignores moves that look bad
 – Follows promising lines “as far as possible”
 – Explores a deep but narrow portion of the tree

• Examples: Chess is Type A and Go is Type B
Heuristic Alpha-Beta Tree Search

\[
\text{MINIMAX}(s) = \\
\begin{align*}
\text{UTILITY}(s) & \quad \text{if TERMINAL-TEST}(s) \\
\max_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \quad \text{if PLAYER}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \quad \text{if PLAYER}(s) = \text{MIN}
\end{align*}
\]

\[
\text{H-MINIMAX}(s, d) = \\
\begin{align*}
\text{EVAL}(s) & \quad \text{if CUTOFF-TEST}(s, d) \\
\max_{a \in \text{Actions}(s)} \text{H-MINIMAX}(\text{RESULT}(s, a), d + 1) & \quad \text{if PLAYER}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{H-MINIMAX}(\text{RESULT}(s, a), d + 1) & \quad \text{if PLAYER}(s) = \text{MIN}.
\end{align*}
\]
Evaluation Functions

- Less computation time (Not too long!)
- Should be strongly correlated with the actual **chances** of winning. $\text{Eval}(s) > \text{Eval}(s')$
- Return an **estimated** value about outcome (Expected utility of state s to player p)
- A linear combination of **features**. (Weighted linear function)

$$\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$
Evaluation Functions

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- \(f_i(s) \) is a feature extracted from the input state \(s \)
- \(w_i \) is a weight assigned to a feature
- Example: Checker
 - Features: # of agent pawns, # of agent kings, # of opponent pawns, and # of opponent kings
 - Select positive weights for agent and negative weights for opponents
 - Kings has more weights than pawns

\[\text{Eval}(s) = 2 \cdot \text{agent_kings}(s) + \text{agent_pawns}(s) - 2 \cdot \text{opponent_kings}(s) - \text{opponent_pawns}(s) \]

Features and weights come from human experience or machine learning a domain-specific and approximate estimate of the value \(V_{\text{minimax}}(s) \).

Fine-tuning Experimenting
Heuristic Evaluation Functions

- Cutting off Search
 If game.Is-Cutoff(state, depth) the return game.Eval(state, player), null
 - Set a fixed depth limit
 - Iterative deepening
 - Use a transposition table

- Forward pruning
 - Prunes possible poor moves
 - Saves computation time at the risk
 • Could possibly prune good moves
Heuristic Evaluation Functions

• Beam search
 – Consider only a “beam” of the n best moves
 – Also could possibly prune good moves

• PROBCUT: probabilistic cut
 – Use statistics gained from prior experience
 – Prune nodes that are probably no need to be considered
Search vs Lookup

- Create a table and lookup
- Opening sequences most often lead to a win
- Policy: Map every possible state to the best move in that state
General Games

Image from Age of Empires II
Multiplayer (3) Game Tree

to move
A

B

C

A

(1, 2, 6) (1, 2, 6) (6, 1, 2) (0, 5, 2) (5, 4, 5)

X

(4, 2, 3) (6, 1, 2) (5, 1, 1) (0, 5, 2) (7, 7, 1)

(1, 2, 6) (7, 4, 1) (0, 5, 2) (5, 4, 5)
Reading and Next Class

- Adversarial Search and Games: AIMA 5.1-5.3
- Next:
 - Expectimax: AIMA 5.5
 - Utilities: AIMA 16.1-16.3
Project & Homework

- Project 0 & Homework 0 Due today at 11:59pm

- Project 1: http://courses.cs.vt.edu/cs4804/Fall20/projects/project1.html

- Project 1 & Homework 1: Online Today, Due 09/17 11:59pm

- AIMA-python: https://github.com/aimacode/aima-python