Passive Reinforcement Learning

Bert Huang Introduction to Artificial Intelligence

Notation Review

Recall the Bellman Equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a)U(s')$$

alternate version

$$U(s) = \max_{a \in A(s)} R(s, a) + \gamma \sum_{s'} P(s'|s, a)U(s')$$

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{arg max}} \sum_{s'} P(s'|s, a) U(s')$$

Value Iteration Drawbacks

- Computes utility for every state
- Needs exact transition model
- Needs to fully observe state
- Needs to know exact reward for each state in advance

Slippery Bridge

	Value Iteration	Passive Learning	Active Learning
States and rewards	Observes all states and rewards in environment	Observes only states (and rewards) visited by agent	Observes only states (and rewards) visited by agent
Transitions	Observes all action- transition probabilities	Observes only transitions that occur from chosen actions	Observes only transitions that occur from chosen actions
Decisions	N/A	Learning algorithm does not choose actions	Learning algorithm chooses actions

Detour Slide: Inverse Reinforcement Learning

Slide by Prof. Michael Littman

Gradient ascent through reward parameters on likelihood function (Babes, Marivate, Littman & Subramanian 11).

Passive Learning

- Recordings of agent running fixed policy
- Observe states, rewards, actions
- Three passive learning methods:
 - Direct utility estimation
 - Adaptive dynamic programming (ADP)
 - Temporal-difference (TD) learning

Passive Learning

- Learn U^π from observed recordings
 - May learn Pr(s' | s, a)
- What is the benefit of learning U^{π} ?
- Can we act intelligently given U^π and Pr(s' | s, a)?

Direct Utility Estimation

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

future reward of state assuming we use this policy

Direct utility estimation: use observed rewards and future rewards to estimate U (i.e., take average of samples from data)

	t=1	2	3	4	5	6	7	8	9	10	 	T
State	Α	В	С	Α	D	D	Е	E	F	G		E
Action	up	up	down	up	right	right	left	up	down	down	 	up
Reward	10	-30	1	10	-2	-2	100	100	90	80	 	100

	t=1	2	3	4	5	6	7	8	9	10	 	Т
State	A	В	С	A	D	D	Е	Е	F	G		Е
Action	up	up	down	up	right	right	left	up	down	down	 	up
Reward	10	-30	1	10	-2	-2	100	100	90	80	 	100

10 -30 1 10 -2 -2 100 100 90 80 ... 100

10 -2 -2 100 100 90 80 ... 100

	t=1	2	3	4	5	6	7	8	9	10	 	Т
State	Α	В	С	Α	D	D	E	Е	F	G		E
Action	up	up	down	up	right	right	left	up	down	down	 	up
Reward	10	-30	1	10	-2	-2	100	100	90	80	 	100

10	-30	1	10	-2	-2	100	100	90	80	 	100
			10	-2	-2	100	100	90	80		100

В	-30	1	10	-2	-2	100	100	90	80	 	100

	t=1	2	3	4	5	6	7	8	9	10	 	T
State	Α	В	С	Α	D	D	Е	Е	F	G		E
Action	up	up	down	up	right	right	left	up	down	down	 	up
Reward	10	-30	1	10	-2	-2	100	100	90	80	 	100

-2 -30 10 -2 100 100 10 90 80 100 10 -2 -2 100 100 80 90 100

B -30 1 10 -2 -2 100 100 90 80 ... 100

• • •

-2 -2 100 100 90 80 100 . . . -2 100 100 100 90 80

Adaptive Dynamic Programming

Run value iteration using rewards and estimated transition probabilities

Adaptive Dynamic Programming

Run value iteration using rewards and estimated transition probabilities

Action	Result
RIGHT	UP
RIGHT	RIGHT
RIGHT	RIGHT
RIGHT	DOWN
RIGHT	RIGHT

Adaptive Dynamic Programming

Run value iteration using rewards and estimated transition probabilities

(Estimate of) Estimate of
$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

Temporal-Difference Learning

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

$$U^{\pi}(s) = R(s) + \gamma \mathbf{E}_{s'}[U^{\pi}(s')]$$

$$U^{\pi}(s) = \mathcal{E}_{s'}[R(s) + \gamma U^{\pi}(s')]$$

learning rate parameter

current estimate of utility

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

"observed utility"

Temporal-Difference Learning

Converges slower than ADP, but much simpler update.

Leads to famous q-learning algorithm

Passive Learning

- Recordings of agent running fixed policy
- Observe states, rewards, actions
- Three passive learning methods:
 - Direct utility estimation
 - Adaptive dynamic programming (ADP)
 - Temporal-difference (TD) learning