Probability Identities

- Random variables in caps (A)
- values in lowercase: $\mathbf{A}=\mathbf{a}$ or just a for shorthand
- $P(a \mid b)=P(a, b) / P(b)$ conditional probability
- $P(a, b)=P(a \mid b) P(b)$
joint probability
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$

Probability via Counting

Probability via Counting

P(circle, red)

$$
=2 / 8=0.25
$$

Probability via Counting

$$
\begin{array}{ccc}
P(\text { circle } \mid \text { red }) & =P(\text { circle, red }) / P(\text { red }) \\
2 / 3 & 2 / 8 & 3 / 8
\end{array}
$$

Probability via Counting

$$
\begin{array}{ccc}
P(\text { circle } \mid \text { red }) & P(\text { red }) & =P(\text { circle }, \text { red }) \\
2 / 3 & 3 / 8 & 2 / 8
\end{array}
$$

Probability Identities

- Random variables in caps (A)
- values in lowercase: $\mathbf{A}=\mathbf{a}$ or just a for shorthand
- $P(a \mid b)=P(a, b) / P(b)$
- $P(a, b)=P(a \mid b) P(b)$
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$

Bayes Rule

- $P(b \mid a)$
- $P(b \mid a)=P(a, b) / P(a)$
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$

