A Formal Basis for the Heuristic Determination
of Minimum Cost Paths

PETER E. HART, meMBER, 1EEE, NILS J. NILSSON, MEMBER, IEEE, AND BERTRAM RAPHAEL

Search Algorithm A*:

1) Mark s “open’ and calculate f(s).

2) Select the open node n whose value of { is smallest.
Resolve ties arbitrarily, but always in favor of any node
nel.

3) Ifn e 7, mark n “closed” and terminate the algorithm.

4) Otherwise, mark n closed and apply the successor
operator I' to n. Calculate f for each successor of n and
mark as open each successor not already marked closed.
Remark as open any closed node n; which is a successor of
n and for which f(n,) is smaller now than it was when n,
was marked closed. Go to Step 2.

C. Proof of the Optimality of A*

The next lemma makes the important observation about
the operation of A* that, under the consistency assump-
tion, 1f node 7 is closed, then ¢(n) = g(n). This fact is im-
portant for two reasons. First, it is used in the proof of the
theorem about the optimality of A* to follow, and second,
1t states that A* need never reopen a closed node. That is,
if A* expands a node, then the optimal path to that node
has already been found. Thus, in Step 4 of the algorithm
A*, the provision for reopening a closed node is vacuous
and may be eliminated.

Adversarial Search & Pruning

Virginia Tech CS 4804
Introduction to Artificial Intelligence

Plan

e Minimax

* Pruning minimax search

Game Representation

e Zero-sum games of perfect information
* [wo players: MAX vs MIN

e Players alternate actions: state space transitions

Representation Elements

PLAYER(S): which player chooses the action in state s
ACTIONS(s): what actions are available from state s
RESULT(s,a): the state that results from action a in state s
TERMINAL-TEST(S): whether state s is a terminal state

UTILITY(s): the value of state s, usually only it terminal

Minimax Strategy

e Choose best move assuming opponent plays optimally

e |.e., opponent also uses minimax

e MINIMAX(S) =
it TERMINAL-TEST(s) then UTILITY(S)
it PLAYER(s) = MAX then
max of MINIMAX(RESULT(s,a)) for ain ACTIONS(s)
it PLAYER(s) = MIN then
min of MINIMAX(RESULT(s,a)) for a in ACTIONS(s)

MAX

MIN

e MINIMAX(S) =
it TERMINAL-TEST(s) then UTILITY(Ss)
T PLAYER(s) = MAX then
max of MINIMAX(RESULT(s,a)) for ain ACTIONS(S)
it PLAYER(s) = MIN then
min of MINIMAX(RESULT(s,a)) for ain ACTIONS(s)

function MINIMAX-DECISION(state) returns an action
return arg max ACTIONS(s) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V < OO
for each a In ACTIONS(state) do
v +— MAX(v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V <— OO
for each a In ACTIONS(state) do
v «— MIN(v, MAX-VALUE(RESULT(S, a)))
return v

What about the MINIMAX algorithm does not work
f the game is not zero-sum?

How can we adjust the algorithm to address this
problem?

For every game tree, the utility obtained by MAX

Using minimax decisions against a suboptimal

MIN will never be lower than the utility obtaineco
against an optimal MIN

MAX

MIN

Alpha-Beta Prunmg

* [alpha, beta]
alpha = upper-bound on minimax value
beta = lower-bound on minimax value

(C) [37 +OO] A

3,31 &/

() [3,3] A

[[_wf),

3 12 8 2 14 5 2

(b)

() [3, +00] A ()

() [3, +00] A\

(c)

(e)

[3, +0] /A

(d)

(1)

()

(e)

(f) [3,3] A

/\

3 12 8 2 14

function ALPHA-BETA-SEARCH(state) returns an action
v «— MAX-VALUE(state,—00,+00)
return the action 1 ACTIONS(state) with value v

function MAX-VALUE(state, o,) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V — —0O0
for each a in ACTIONS(state) do
v «— MAX(v, MIN-VALUE(RESULT(s,a), o, 3))
if v > [then return v
o <— MAX(a, v)
return v

function MIN-VALUE(state, «,) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V<— +00
for each a in ACTIONS(state) do
v «— MIN(v, MAX-VALUE(RESULT(s,a) ,a, 3))
if v < o then return v
B +— MIN(3, v)
return v

Notes

* [ransposition table: cache previously-seen states

o Maximum-depth heuristics

Reading

 Chapter 5up to 5.3

