A Formal Basis for the Heuristic Determination of Minimum Cost Paths

PETER E. HART, MEMBER, IEEE, NILS J. NILSSON, MEMBER, IEEE, AND BERTRAM RAPHAEL

Search Algorithm A*:

- 1) Mark s "open" and calculate $\hat{f}(s)$.
- 2) Select the open node n whose value of \hat{f} is smallest. Resolve ties arbitrarily, but always in favor of any node $n \in T$.
 - 3) If $n \in T$, mark n "closed" and terminate the algorithm.
- 4) Otherwise, mark n closed and apply the successor operator Γ to n. Calculate \hat{f} for each successor of n and mark as open each successor not already marked closed. Remark as open any closed node n_i which is a successor of n and for which $\hat{f}(n_i)$ is smaller now than it was when n_i was marked closed. Go to Step 2.

C. Proof of the Optimality of A*

The next lemma makes the important observation about the operation of A^* that, under the consistency assumption, if node n is closed, then g(n) = g(n). This fact is important for two reasons. First, it is used in the proof of the theorem about the optimality of A^* to follow, and second, it states that A^* need never reopen a closed node. That is, if A^* expands a node, then the optimal path to that node has already been found. Thus, in Step 4 of the algorithm A^* , the provision for reopening a closed node is vacuous and may be eliminated.

Adversarial Search & Pruning

Virginia Tech CS 4804 Introduction to Artificial Intelligence

Plan

- Minimax
- Pruning minimax search

Game Representation

- zero-sum games of perfect information
- Two players: MAX vs MIN
- Players alternate actions: state space transitions

Representation Elements

- PLAYER(s): which player chooses the action in state s
- ACTIONS(s): what actions are available from state s
- RESULT(s,a): the state that results from action a in state s
- TERMINAL-TEST(s): whether state s is a terminal state
- UTILITY(s): the value of state s, usually only if terminal

Minimax Strategy

- Choose best move assuming opponent plays optimally
 - i.e., opponent also uses minimax
- MINIMAX(s) =
 if TERMINAL-TEST(s) then UTILITY(s)
 if PLAYER(s) = MAX then
 max of MINIMAX(RESULT(s,a)) for a in ACTIONS(s)
 if PLAYER(s) = MIN then
 min of MINIMAX(RESULT(s,a)) for a in ACTIONS(s)

MINIMAX(s) =
 if TERMINAL-TEST(s) then UTILITY(s)
 if PLAYER(s) = MAX then
 max of MINIMAX(RESULT(s,a)) for a in ACTIONS(s)
 if PLAYER(s) = MIN then
 min of MINIMAX(RESULT(s,a)) for a in ACTIONS(s)

```
function MINIMAX-DECISION(state) returns an action
  return \arg\max_{a \in ACTIONS(s)} Min-Value(Result(state, a))
function Max-Value(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))
  return v
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
```

for each a in ACTIONS(state) do

return v

 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))$

What about the MINIMAX algorithm does not work if the game is **not** zero-sum?

How can we adjust the algorithm to address this problem?

For every game tree, the utility obtained by MAX using minimax decisions against a **suboptimal** MIN will never be lower than the utility obtained against an optimal MIN

Pruning

Alpha-Beta Pruning

[alpha, beta]
 alpha = upper-bound on minimax value
 beta = lower-bound on minimax value

(c) $[3, +\infty] \mathbb{A}$

 $[3, +\infty] \mathbb{A}$

(e) [3, 14] A

(f)

(f) [3.31 A


```
function ALPHA-BETA-SEARCH(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
  return the action in ACTIONS(state) with value v
function MAX-VALUE(state, \alpha, \beta) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
     if v \geq \beta then return v
     \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
```

function MIN-VALUE($state, \alpha, \beta$) returns a utility value if Terminal-Test(state) then return Utility(state) $v \leftarrow +\infty$ for each a in Actions(state) do $v \leftarrow \text{Min}(v, \text{Max-Value}(\text{Result}(s, a), \alpha, \beta))$ if $v \leq \alpha$ then return v $\beta \leftarrow \text{Min}(\beta, v)$

return v

Notes

- Transposition table: cache previously-seen states
- Maximum-depth heuristics

Reading

• Chapter 5 up to 5.3