
A* Optimality

CS4804

Plan
• A* in a tree

• A* in a graph

• How to handle multiple paths to a node

• Intuition about consistency

• Search space + heuristic design practice

A* Search
• Expand node in frontier with best evaluation function score f(n)

• f(n) = g(n) + h(n)

• g(n) := cost to get from initial state to n

• h(n) := heuristic estimate of cost to get from n to goal

• Optimal in trees if admissible h(n) <= true cost to goal

• Optimal in graphs if consistent h(n) <= c(n, n’) + h(n’)

A* in a Tree
S

A

B C

c(S, A)

c(A, B) c(A, C)

h(B) h(C)

B: c(S, A) + c(A, B) + h(B)

C: c(S, A) +c(A, C) + h(C)

g(n) + h(n)

g(n) is always the exact cost of the only path to n
h(n) is an underestimate of cost to goal

A* in a Tree
S

A

B C

G1

c(S, A)

c(A, B) c(A, C)

G2

h(B) h(C)

G1: true cost to G1

B: underestimate of true cost to goal through B

if G2 were cheaper, B’s priority
would be cheaper than G1’s

“Lemmas”

1. Priority of each node we expand is always an underestimate of true
cost to goal through node

2. Priorities of any goal state we expand is true cost of path to goal

A* in a Graph

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do:

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the solution

add the node to the explored set

expand the chosen node, adding the resulting nodes to frontier  
 only if not in the frontier or explored set

S

A

C

B

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do:

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the solution

add the node to the explored set

expand the chosen node, adding the resulting nodes to frontier  
 only if not in the frontier or explored set

S

A

C

B

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do:

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the solution

add the node to the explored set

expand the chosen node, adding the resulting nodes to frontier  
 only if not in the frontier or explored set

S

A

C

B

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do:

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the solution

add the node to the explored set

expand the chosen node, adding the resulting nodes to frontier  
 only if not in the frontier or explored set

S

A

C

B

Two Solutions

• Solution 1: If you encounter a child node already in the frontier,
update the priority of the child with better score

• Solution 2: Allow multiple copies of nodes in frontier, but when
selecting nodes from frontier, ignore nodes you’ve already expanded

• We may add nodes to frontier with overestimated costs, but every
node we choose to expand will have its true shortest path cost g(n)

• Definition: h(n) <= c(n, n’) + h(n’)

• Rule of thumb:

• Design an easier search space. Set h(n) to cost in easier space.

• E.g., Straight-line distance (ignoring obstacles)

Consistency
h(n)

c(n, n’)
n

n’ G
h(n’)

Admissibility isn’t Enough

S

Priority Queue:

A B

CG

2 0

0

h(A) <= c(A, C) + h(C)
2 <= 1 + 0

S
Expand S: (A, 3), (B, 1)
Expand B: (A, 3), (C, 3)
Expand C: (A, 3), (G, 4)

11

2

1

1
Expand A: (G, 4), (C, 2)

Benefits from Consistency

• When expanding a node n, the optimal path to n has been found

•

Search Problems
Graph

or Tree? States Actions Transition
Costs Heuristic Ideas

Car
Navigation

Rubik’s
Cube graph Config of cube Rotating slices Uniform How many squares in right side (divide

by 12)

16 Puzzle

N-Queens

Final Notes

• Store path from initial state

• Python tuples vs. lists

• Next class: Python practice

• Friday: Homework 1 coding

