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* Biological inspiration for artificial neural networks
e [inear vs. nonlinear functions

e | earning with neural networks: back propagation
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|_ogistic Function
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L ogistic Function
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-rom Features to Probability
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Multl-Layered Perceptron




Multl-Layered Perceptron

raw data X1,

Xs,

shapes
shadows

prediction faces

pixel values

representation




Multl-Layered Perceptron
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Decision Surface: Logistic Regression
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Decision Surface: 2-Layer, 2 Hidden Units
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Decision Surface: 2-Layer, More Hidden Units
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Decision Surface: More Layers, More Hidden Units
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Training Neural Networks
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Gradient Descent
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Approximate Q-Learning
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Back Propagation

* Back propagation:
o Compute hidden unit activations: forward propagation
o Compute gradient at output layer: error
 Propagate error back one layer at a time

e Chain rule via dynamic programming
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From Wikipedia, the free encyclopedia

This article is about the chain rule in calculus. For the chain rule in probability theory, see Chain rule (probability). For other uses,

see Chain rule (disambiguation).

In calculus, the chain rule is a formula for computing the derivative of the composition
of two or more functions. That is, if fand g are functions, then the chain rule expresses
the derivative of their composition f - g (the function which maps xto f(g(x)) ) in terms
of the derivatives of fand g and the product of functions as follows:

(fog) =(fog9)-9.
This may equivalently be expressed in terms of the variable. Let F'=f - g, or
equivalently, F(x) = f{g(x)) for all x. Then one can also write

F'(z) = f'(9())d ().

The chain rule may be written in Leibniz's notation in the following way. If a variable z
depends on the variable y, which itself depends on the variable x, so that yand z are
therefore dependent variables, then z, via the intermediate variable of y, depends on x
as well. The chain rule then states,

dz dz dy
de dy dz

The two versions of the chain rule are related; if z = f(y) and y = g(x), then
% dz | dy

T T (g (z) = f(g(x))g (z).
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Chain Rule Review
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Chain Rule on More Complex Function
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Back to Neural Networks
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Back to Neural Networks
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INntuition of Back Propagation

o At each layer, calculate how much changing the input changes the
final output (derivative of final output w.r.t. layer’s input)

o Calculate directly for last layer

o For preceding layers, use calculation from next layer and work
backwards through network

e Use that derivative to find how changing the weights affect the error
of the final output



Y1 Matrix Form
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FY|: Matrix Gradient Recipe

N1 = S(W1X)
lej — 5133T
No = S(Wz h1)
Vw,J = 6h,
§i = (W,h16i41) © 8’ (Wihi_1)
Nm-1 = S(Wm—1 hm—2) va_lj — 5m_1h7—;_2
5m—1 — (Wfr—rzém) O Sl(Wm—lhm—Q)
f(X, \N) — S(Wm hm-‘l) VW J _ 5th_|;L_1
6 = ' (f (2, W) i
J(W) __ Z(f(:z:, W)) (YOU will not be testea

on this matrix form in
this course.)



FY|: Matrix Gradient Recipe
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Feed Forward

Propagation Back Propagation



Other New Aspects of Deep Learning

 GPU computation
* Ditferentiable programming
o Automatic differentiation

e Neural network structures



Types of Neural Network Structures

e Feed-forward
 Recurrent neural networks (RNNs)

* (Good for analyzing sequences (text, time series)
e Convolutional neural networks (convnets, CNNS)

e (Good for analyzing spatial data (images, videos)
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