Neural Networks

Intro to Al
Bert Huang
Virginia lTech

Outline

* Biological inspiration for artificial neural networks
e [inear vs. nonlinear functions

e | earning with neural networks: back propagation

https://en.wikipedia.org/wiki/Neuron#/media/File:Chemical synapse schema cropped.jpg

https://en.wikipedia.org/wiki/Neuron#/media/File:Chemical_synapse_schema_cropped.jpg

https://en.wikipedia.org/wiki/Neuron#/media/File:GFPneuron.png

“
’ko-‘_/Synapse

https://en.wikipedia.org/wiki/Neuron#/media/File:Chemical_synapse_schema_cropped.jpg

Parameterizing p(y|x)

8 Figure 1
File Edit View Insert Tools Desktop Window Help

ply|x) =1
f:RY — [0, 1] x

1 -0.5¢ "

F(x) = 1 4+ exp(—w ' x)

Parameterizing p(y|x)

8 Figure 1
File Edit View Insert Tools Desktop Window Help

plylx) = f
f:RY 0, 1] > e

F(x) = 1 4+ exp(—w ' x)

|_ogistic Function

| NN Figure 1
File Edit View Insert Tools Desktop Window Help ¥

T2 de N RIEGEMB®ELLKL-- @ 0 imi

10

L ogistic Function

() = ——
o(x) =
]_ —|_ eXP(—X) File Edit View Insert Tools Desktop v:/::i:r: wwwww
1 1 G de b y
im o(x) = lim - =1.0 -
X—00 x—00 1 + exp(X) 1 2l
1 1 X 06!
O — p— — 05 ' %
7(0) l14+exp(—0) 141 =04
. , 0.2}
im o(x)=lim =0.0 9

X—— 00 x——o00 1 + eXp(X)

-rom Features to Probability

O O Figure 1
File Edit View Insert Tools Desktop Window Help ™

Jdde R RKRXOTDEL)- @ 0L im

1.57

Parameterizing p(y|x)

Figure 1
File Edit View Insert Tools Desktop Window Help

p(y‘X) j— f TdHde h RAODREW- 2 0E aO N
f: R d — [O,]_] | 21X

Multl-Layered Perceptron

Multl-Layered Perceptron

raw data X1,

Xs,

shapes
shadows

prediction faces

pixel values

representation

Multl-Layered Perceptron

x) (& X s

X3,
2
PN

h1 = o(wyyx) h+ h> hy = o(wix)

|

h=[hi, h]' y p(y|x) = o(wy h)

ply|x) =0 (W2T1 [U(WlTlx), O'(Wl—gX)}T>

Decision Surface: Logistic Regression

. NON Figure 1 ® O Figure 1
File Edit View Insert Tools Desktop Window Help e File Edit View Insert Tools Desktop Window Help
Nagde h AKAOWBE- 2 0B aO Ddde h AKA0DEE- @ 10EH =@

- -1.5 -1 -0.5 1

Decision Surface: 2-Layer, 2 Hidden Units

® O Figure 1 ® ©o Figure 1

.F'le Edit View Insert Tools Desktop Window Help n File Edit View Insert Tools Desktop Window Help

=] — 4, FOE 4Ty 7| _ - : - — : — - :

N de b &R OOE6- @ I0E oo N de h ARATBDEW- @ 0B a0

0.7 o
ogs .48
|o.66 -1t
|0 64

o

-2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 C -1 -] 0.5 0 0.5 1 1.3

Decision Surface: 2-Layer, More Hidden Units

® O Figure 1 ® O Figure 1
File Edit View Insert Tools Desktop Window Help t File Edit View Insert Tools Desktop Window Help
Nade h AA0BEA- @ I0E oD NEade b AA0BEE- 2 I0E O

0.7
0.34

0.65

0.6 0.32

0.55

0.5 0.3

0.45

0.4 0.23

0.35

0.26
0.3

0.25
0.24

0.2

3 hidden units 10 hidden units

Decision Surface: More Layers, More Hidden Units

O ® Figure 1 O ® Figure 1
File Edit View Insert Tools Desktop Window Help ¥ File Edit View Insert Tools Desktop Window Help u
DEde h ARUDEW- @08 @ DEde h AU DEW- @08 @O

2 2

0.6411

1.5 1.5

1 1

0.r72
0.7

AR
L _|0.63

0.5 0.5
L B4 -

0 I
05 0.5 - -[0.64

- -[0.6411

1
—

0.62
0.6411

0.6

10 layers, 5 hidden units per layer 4 layers, 10 hidden units each layer

Training Neural Networks

min

6L
W<—W—a

Gradient Descent

Gradient Descent

oL
V‘G(—V‘/}—a —_—
oW,

very positive
take big step left

almost zero
take tiny step left

slightly negative
\ W take medium step right

Approximate Q-Learning

Q(Sa CL) - g(s, a, 9) = elfl(sa CL) T 92f2(87 CL) T... T ded(S, CL)

A A 0
0; < 0, + « (R(S) + 7y max O(s',a’) — O(s, CL)) 379

0; +— 0, + o (R(s) + 7y max O(s',a') — O(s, a)) fi(s,a)

Back Propagation

* Back propagation:
o Compute hidden unit activations: forward propagation
o Compute gradient at output layer: error
 Propagate error back one layer at a time

e Chain rule via dynamic programming

=D

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Article Talk

Read Edit

Chain rule

View history

Search Wikipedia

From Wikipedia, the free encyclopedia

This article is about the chain rule in calculus. For the chain rule in probability theory, see Chain rule (probability). For other uses,

see Chain rule (disambiguation).

In calculus, the chain rule is a formula for computing the derivative of the composition
of two or more functions. That is, if fand g are functions, then the chain rule expresses
the derivative of their composition f - g (the function which maps xto f(g(x))) in terms
of the derivatives of fand g and the product of functions as follows:

(fog) =(fog9)-9.
This may equivalently be expressed in terms of the variable. Let F'=f - g, or
equivalently, F(x) = f{g(x)) for all x. Then one can also write

F'(z) = f'(9())d ().

The chain rule may be written in Leibniz's notation in the following way. If a variable z
depends on the variable y, which itself depends on the variable x, so that yand z are
therefore dependent variables, then z, via the intermediate variable of y, depends on x
as well. The chain rule then states,

dz dz dy
de dy dz

The two versions of the chain rule are related; if z = f(y) and y = g(x), then
% dz | dy

T T (g (z) = f(g(x))g (z).

Part of a series of articles about

Calculus

Fundamental theorem
Limits of functions + Continuity
Mean value theorem - Rolle's theorem

Differential [hide]

Definitions

Derivative (generalizations)
Differential (infinitesimal - of a function - total)

Concepts

Differentiation notation - Second derivative -
Third derivative - Change of variables -
Implicit differentiation - Related rates -
Taylor's theorem

Rules and identities

Sum - Product - Chain - Power * Quotient -
Inverse - General Leibniz -
Faa di Bruno's formula

Integral [show]

QA”:AA Falea szl

Chain Rule Review

f(g(x))
dfiglx)) dfigk) dgx)

d x d g(x) d x

X = g(x) —» f(g(x))

Chain Rule on More Complex Function

h(f(a) + g(b))
d h(f(a) + g(b)) d h(f(a) +g(b))
d a d b

d fla)
d a

~d g(b)
d b

Back to Neural Networks

hy = f(x, wy)

hn—l — f(hn—Z’ Wn—l)

y =f(hn—19 Wn)

Back to Neural Networks

hy = f(x, w;)

hn—l — f(hn—Z’ Wn—l)

y =f(hn—19 Wn)

dL dL dy
L(y) dwn_dy dw,

INntuition of Back Propagation

o At each layer, calculate how much changing the input changes the
final output (derivative of final output w.r.t. layer’s input)

o Calculate directly for last layer

o For preceding layers, use calculation from next layer and work
backwards through network

e Use that derivative to find how changing the weights affect the error
of the final output

Y1 Matrix Form

O 0_0O0._0O 0O =
S
‘ N1 = s(W1x)
‘ ho = s(Wz hi)
(You will not be tested

on this matrix form in
this course.

)
‘\./‘ Nm-1 = S(Wm—1 hm—2)
JW) =L(f(x,W)) f(X, W) = s(Wm hm-1)

FY|: Matrix Gradient Recipe

N1 = S(W1X)
lej — 5133T
No = S(Wz h1)
Vw,J = 6h,
§i = (W,h16i41) © 8’ (Wihi_1)
Nm-1 = S(Wm—1 hm—2) va_lj — 5m_1h7—;_2
5m—1 — (Wfr—rzém) O Sl(Wm—lhm—Q)
f(X, \N) — S(Wm hm-‘l) VW J _ 5th_|;L_1
6 = ' (f (2, W) i
J(W) __ Z(f(:z:, W)) (YOU will not be testea

on this matrix form in
this course.)

FY|: Matrix Gradient Recipe

(You will not be tested
on this matrix form in
this course.)

N1 = S(W1X)
Ni = s(W; hi-1) 0; = (Wi115i+1) O S/(Wihi_l) Vi, J = 5133T
f(x, W) = $(Wm hem-1) Om =V (f(x,W)) Vw,J = 6:h; |

JW) = £(f(z,W))

Feed Forward

Propagation Back Propagation

Other New Aspects of Deep Learning

 GPU computation
* Ditferentiable programming
o Automatic differentiation

e Neural network structures

Types of Neural Network Structures

e Feed-forward
 Recurrent neural networks (RNNs)

* (Good for analyzing sequences (text, time series)
e Convolutional neural networks (convnets, CNNS)

e (Good for analyzing spatial data (images, videos)

Outline

* Biological inspiration for artificial neural networks
e [inear vs. nonlinear functions

e | earning with neural networks: backpropagation

