Machine Learning

Intro to Al Bert Huang Virginia Tech

Machine Learning

- Learning: improving with experience at some task
 - Improve over **task**
 - with respect to some **performance measure**
 - based on some experience
- Writing computer programs that write computer programs

Learning definition by Tom Mitchell

- Three machine learning stories/cautionary tales
- Deep learning definition
- Types of machine learning
- Best practices

Outline

Machine Learning Story 1 Face Detection & Recognition

	⊜ google.com Č				1 D
OS	Do	wnload for	Ŵ	é	Go to Google Phot

Find photos by what's in them

Looking for that photo of your pup? Just tap "dog" or the place you took it to find it faster.

What Does a Human Face Look Like?

Apple II image from wikipedia.com. Eyes added digitally.

Apple II image from wikipedia.com. Eyes added digitally.

if pixel153 > 128 & pixel154 > 128 & pixel155 > 128 & pixel156 < 64 & sqrt(pixel157) < 82 & log(pixel1132 * pixel1133) > 1 then image is a face*

* (not a real face recognition program)

Apple II image from wikipedia.com. Eyes added digitally.

Machine Learning Story 2 Recommender Systems

Browse Genre Stations

0

People You May Know see all

Jim M Add as Friend

Erin Elizabeth K Add as Friend

Josh S Add as Friend

Recommended for You

Figure from Koren, Bell, Volinksy, IEEE Computer, 2009

Applications of Recommendation

- Music
- Medicine
- Jobs

- Movies
- Books

Education

Applications of Recommendation

- Movies
- Books
- Music
- Medicine
- Education
- Jobs

Machine Learning Story 3 Housing Markets

ASA Excellence in Statistical Reporting Award The formula that killed Wall Street

Wall Street in the mid-1980s turned to the quants – brainy financial engineers – to invent new ways to boost profits. They and their managers, though laziness and greed, built a huge financial bubble on foundations that they did not understand. It was a recipe for disaster. The journalist **Felix Salmon** won the American Statistical Association's Excellence in Statistical Reporting Award for 2010. We reprint his article, first published as the cover story of *Wired* magazine, because it brilliantly conveys complex statistical concepts

A formula in statistics, misunderstood and misused, has devastated the qlobal economy

significance february2012 16

In the years before 2008, it was hardly unth that a math wizard like David X. Li might so earn a Nobel Prize. After all, financial econor even Wall Street quants - have received the in economics before, and Li's work on measur has had more impact, more quickly, than p Nobel Prize-winning contributions to the field though, as dazed bankers, politicians, regulate investors survey the wreckage of the biggest fi meltdown since the Great Depression, Li is p thankful he still has a job in finance at all. N his achievement should be dismissed. He too toriously tough nut – determining correlation, seemingly disparate events are related - and

$\Pr[\mathsf{T}_{A} < 1, \mathsf{T}_{B} < 1] = \phi_{2}(\phi^{-1}(\mathsf{F}_{A}(1)), \phi^{-1}(\mathsf{F}_{B}(1)), \gamma)$

The formula that killed so many pension plans: David X. Li's Gaussian copula, as first published in 2000. Investors exploited it as a quick – and fatally flawed – way to assess risk.

Probability

Specifically, this is a joint default probability – the likelihood that any two members of the pool (A and B) will both default. It's what investors are looking for, and the rest of the formula provides the answer.

Copula

This couples (hence the Latinate term copula) the individual probabilities associated with A and B to come up with a single number. Errors here massively increase the risk of the whole equation blowing up.

Survival times

The amount of time between now and when A and B can be expected to default. Li took the idea from a concept in actuarial science that charts what happens to someone's life expectancy when their spouse dies.

Distribution functions

The probabilities of how long A and B are likely to survive. Since these are not certainties, they can be dangerous: Small miscalculations may leave you facing much more risk than the formula indicates.

Equality

A dangerously precise concept, since it leaves no room for error. Clean equations help both quants and their managers forget that the real world contains a surprising amount of uncertainty, fuzziness, and precariousness.

Gamma

The all-powerful correlation parameter, which reduces correlation to a single constant - something that should be highly improbable, if not impossible. This is the magic number that made Li's copula function irresistible.

Machine Learning Stories

- Face recognition
- Recommender systems
- Finance

What is deep learning?

raw image input image preprocessing edge detection object detection object identification

raw image input learnable component (neural network) another neural network another neural network object identification

- process from raw input to raw output
 - training/designing each component on its own

Deep Learning

Using machine learning to simultaneously train every part of the

Considered "deep" when compared to "shallow" approach of

Types of Machine Learning

- Types of learning settings
 - Supervised learning
 - Unsupervised learning
- Types of learning algorithms
 - Batch learning
 - Online learning

Example: Digit Classification

http://ufldl.stanford.edu/housenumbers/

Example: Airline Price Prediction

kayak.com		C			
ACKAGES				Login	
8 🔒 Aug 28 Friday	cabin	y 1 traveler	Cł	nange	
	527 of 533 flight	S	Round-trip Seg	ment NEW	
				ads	
e! Cheap Fares or e it Easy to Travel lovations Award -	n Flights to Honolulu I · Our Best Price Gu CSIA	iarantee · 24/7 Custom	er Care		
US Airways				C ½	
11:35a CLT	- → 5:30p	HNL 11h 55m	1 stop (PHX)		
9:05p HNI	_ → 1:35p	CLT 10h 30m	1 stop (PHX)		
Show details	S ▼			Economy	
American Airlines					
6:10a CLT	· → 12:22	p HNL 12h 12m	1 stop (DFW)		
9:05p HNI	_ → 1:35p	CLT 10h 30m	1 stop (PHX)		

Example: Airline Price Prediction

Sort by: price (low to high) -

\$367 Honolulu Round Trip cheapoair.com/Honolulu-Cheap-Flight

Batch Supervised Learning

- Draw data set $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ from distribution \mathbb{D}
- Algorithm A learns hypothesis $h \in H$ from set H of possible hypotheses A(D) = h
- We measure the quality of h as the expected loss: $E_{(x,y)\in\mathbb{D}} [\ell(y, h(x))]$
 - This quantity is known as the **risk**

• E.g., loss could be the Hamming loss $\ell_{\text{Hamming}}(a, b) = \begin{cases} 0 & \text{if } a = b \\ 1 & 1 \end{cases}$. otherwise classification

Online Supervised Learning • In step **t**, draw data point **x** from distribution \mathbb{D}

- Current hypothesis **h** guesses the label of **x**
- Get true label from oracle **O**
- Pay penalty if **h(x)** is wrong (or earn reward if correct)
- - Does not store history

• Learning algorithm updates to new hypothesis based on this experience

Learning Settings

- Supervised or unsupervised (or semi-supervised, weakly) supervised, transductive...)
- Online or batch (or reinforcement...)
- Classification, regression

(or structured output, clustering, dimensionality reduction...)

Best Practices

- Try range of models with different **capacity**
- Split data into training, validation, and testing sets
- Measure performance on evaluation set to tune parameters
- Measure performance on testing set as final check

Held-out Validation

0	\diamond	Ø	0	Ð
1		ł	4	
2	2	2_	2	2.
3	3	3	3	3
4	4	4	47	4
5	5	5	5	5
6	6	6	6	6
7	7	ł	7	フ
8	8	8	3	К
4	9	7	q	9

Held-out Validation

0	\				Accuracy on training data	Accuracy on validation data
2 3	3	2	3	Simple	0.91	0.83
4 5	4	4 4	4 5	Medium	0.95	0.88
6	6		5	Complex	0.99	0.79
8	8	8	3 1	Super Complex	1.0	0.54

training data

validation data

Summary

- Three machine learning stories
 - One cautionary tale
- Deep learning definition
- Types of machine learning
- Best practices