
Inference in Bayesian Networks

CS 5804 Introduction to Artificial Intelligence 
Virginia Tech



Plan

• Briefly review probability 

• Brute-force inference 

• Smarter inference: variable elimination
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Bayesian Networks

Rain Wet Ground Slip
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Inference

• Given a Bayesian Network describing P(X, Y, Z), what is P(Y) 

• First approach: enumeration
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Variable Elimination
• Every variable that is not an ancestor of a query variable or evidence variable is 

irrelevant to the query 

• Iterate:  

• choose variable to eliminate 

• sum terms relevant to variable, generate new factor 

• until no more variables to eliminate 

• Exact inference is #P-Hard 

• in tree-structured BNs, linear time (in number of table entries)
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Pacman Homework Warmup

• Given: P(ghostLocation | prevGhostLocation) 

• Given: P(noisyDistance | ghostLocation) 

• Goal: P(ghostLocation | noisyDistance) 

• Need: P(ghostLocation | all previous evidence)

XtXt-1

DtDt-1



Reading

• Chapter 13 

• Chapter 14 - 14.2, 14.4-14.4.3


