
Active Reinforcement Learning

Virginia Tech CS5804

Outline

• Active reinforcement learning

• Active adaptive dynamic programming

• Q-learning

Passive Learning
• Recordings of agent running fixed policy

• Observe states, rewards, actions

• Direct utility estimation

• Adaptive dynamic programming (ADP)

• Temporal-difference (TD) learning

Problems with Passive Reinforcement Learning

⇡(s) = argmax

a
P (s0|s, a)U(s0)

Problems with Passive Reinforcement Learning

⇡(s) = argmax

a
P (s0|s, a)U(s0)

Problems with Passive Reinforcement Learning

⇡(s) = argmax

a
P (s0|s, a)U(s0)

Exploration
• Naive approach: randomly choose random action

• shrink probability of random action over time

• Better approach: always act greedy, but overestimate rewards for
unexplored states

U+
(s) R(s) + �max

a
f

X

s0

P (s0|s, a)U+
(s0), N(s, a)

!

• shrink probability of random action over time

• Better approach: always act greedy, but overestimate rewards for
unexplored states

f(u, n) =

(
R+

if n < Ne

u otherwise

U+
(s) R(s) + �max

a
f

X

s0

P (s0|s, a)U+
(s0), N(s, a)

!

• shrink probability of random action over time

• Better approach: always act greedy, but overestimate rewards for
unexplored states

f(u, n) =

(
R+

if n < Ne

u otherwise

U+
(s) R(s) + �max

a
f

X

s0

P (s0|s, a)U+
(s0), N(s, a)

!

• shrink probability of random action over time

• Better approach: always act greedy, but overestimate rewards for
unexplored states

f(u, n) =

(
R+

if n < Ne

u otherwise

U+
(s) R(s) + �max

a
f

X

s0

P (s0|s, a)U+
(s0), N(s, a)

!

Active TD-Learning
• Exactly the same as non-active TD learning

U(s) U(s) + ↵(R(s) + �U(s0)� U(s))

U(s) = R(s) + �Es0 [U(s0)]

Active TD-Learning
• Exactly the same as non-active TD learning

U(s) U(s) + ↵(R(s) + �U(s0)� U(s))

U(s) = R(s) + �Es0 [U(s0)]

Active TD-Learning
• Exactly the same as non-active TD learning

U(s) U(s) + ↵(R(s) + �U(s0)� U(s))

U(s) = R(s) + �Es0 [U(s0)]

• Still need estimates of transition probabilities

Action-Utility Functions
• Combine transition probabilities with utilities

Action-Utility Functions
• Combine transition probabilities with utilities

Q(s, a) = R(s) + �
X

s0

P (s0|s, a)max

a
Q(s0, a0)

Action-Utility Functions
• Combine transition probabilities with utilities

Q(s, a) = R(s) + �
X

s0

P (s0|s, a)max

a
Q(s0, a0)

U(s) = R(s) + �max

a

X

s0

P (s0|s, a)U(s0)

Action-Utility Functions
• Combine transition probabilities with utilities

Q(s, a) = R(s) + �
X

s0

P (s0|s, a)max

a
Q(s0, a0)

U(s) = R(s) + �max

a

X

s0

P (s0|s, a)U(s0)

U(s) = max

a
Q(s, a)

Q-Learning
Q(s, a) = R(s) + �

X

s0

P (s0|s, a)max

a
Q(s0, a0)

U(s) = R(s) + �max

a

X

s0

P (s0|s, a)U(s0)

U(s) = max

a
Q(s, a)

Q(s, a) Q(s, a) + ↵(R(s) + �max

a0
Q(s0, a0)�Q(s, a))

Q-Learning
Q(s, a) = R(s) + �

X

s0

P (s0|s, a)max

a
Q(s0, a0)

U(s) = R(s) + �max

a

X

s0

P (s0|s, a)U(s0)

U(s) = max

a
Q(s, a)

Q(s, a) Q(s, a) + ↵(R(s) + �max

a0
Q(s0, a0)�Q(s, a))

U(s) U(s) + ↵(R(s) + �U(s0)� U(s))

Approximate Q-Learning
Q̂(s, a) := g(s, a,✓) := ✓1f1(s, a) + ✓2f2(s, a) + . . .+ ✓dfd(s, a)

✓i ✓i + ↵
⇣
R(s) + �max

a0
ˆQ(s0, a0)� ˆQ(s, a)

⌘ @g

@✓i

✓i ✓i + ↵
⇣
R(s) + �max

a0
ˆQ(s0, a0)� ˆQ(s, a)

⌘
fi(s, a)

Summary

Summary
• Active reinforcement learning

Summary
• Active reinforcement learning

• Active ADP:

Summary
• Active reinforcement learning

• Active ADP:

• choose random actions or act greedy and overestimate utility

Summary
• Active reinforcement learning

• Active ADP:

• choose random actions or act greedy and overestimate utility

• Active TD: exactly the same as standard TD

Summary
• Active reinforcement learning

• Active ADP:

• choose random actions or act greedy and overestimate utility

• Active TD: exactly the same as standard TD

• Q-learning: learn action-reward function directly, via TD learning

Summary
• Active reinforcement learning

• Active ADP:

• choose random actions or act greedy and overestimate utility

• Active TD: exactly the same as standard TD

• Q-learning: learn action-reward function directly, via TD learning

• Approximation uses derivative of utility function, easy if linear

