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Outline

• Active reinforcement learning 

• Active adaptive dynamic programming 

• Q-learning



Passive Learning
• Recordings of agent running fixed policy 

• Observe states, rewards, actions 

• Direct utility estimation 

• Adaptive dynamic programming (ADP) 

• Temporal-difference (TD) learning



Problems with Passive Reinforcement Learning
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Exploration
• Naive approach: randomly choose random action 

• shrink probability of random action over time 

• Better approach: always act greedy, but overestimate rewards for 
unexplored states
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Active TD-Learning
• Exactly the same as non-active TD learning
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Active TD-Learning
• Exactly the same as non-active TD learning

U(s) U(s) + ↵(R(s) + �U(s0)� U(s))

U(s) = R(s) + �Es0 [U(s0)]

• Still need estimates of transition probabilities
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Q-Learning
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Approximate Q-Learning
Q̂(s, a) := g(s, a,✓) := ✓1f1(s, a) + ✓2f2(s, a) + . . .+ ✓dfd(s, a)
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Summary
• Active reinforcement learning

• Active ADP: 

• choose random actions or act greedy and overestimate utility

• Active TD: exactly the same as standard TD

• Q-learning: learn action-reward function directly, via TD learning

• Approximation uses derivative of utility function, easy if linear


