
Passive Reinforcement Learning

Bert Huang 
Introduction to Artificial Intelligence



Notation Review
• Recall the Bellman Equation:

⇡⇤
(s) = arg max

a2A(s)

X

s0

P (s0|s, a)U(s0)

U(s) = R(s) + � max

a2A(s)

X

s0

P (s0|s, a)U(s0)

U(s) = max

a2A(s)
R(s, a) + �

X

s0

P (s0|s, a)U(s0)
alternate version



• Computes utility for every state 

• Needs exact transition model 

• Needs to fully observe state 

• Needs to know exact reward for each state

Value Iteration Drawbacks



Slippery Bridge
etc.



Value Iteration Passive Learning Active Learning

States and rewards

Transitions

Decisions

Value Iteration Passive Learning Active Learning

States and rewards Observes all states and 
rewards in environment

Observes only states 
(and rewards) visited by 

agent

Observes only states 
(and rewards) visited by 

agent

Transitions Observes all action-
transition probabilities

Observes only transitions 
that occur from chosen 

actions

Observes only transitions 
that occur from chosen 

actions

Decisions N/A Learning algorithm does 
not choose actions

Learning algorithm 
chooses actions



Passive Learning
• Recordings of agent running fixed policy 

• Observe states, rewards, actions 

• Direct utility estimation 

• Adaptive dynamic programming (ADP) 

• Temporal-difference (TD) learning



Direct Utility Estimation
U(s) = R(s) + � max

a2A(s)

X

s0

P (s0|s, a)U(s0)

U⇡(s) = R(s) + �
X

s0

P (s0|s,⇡(s))U⇡(s0)

future reward of state assuming we use this policy

Direct utility estimation: use observed rewards and future rewards to 
estimate U (i.e., take average of samples from data)



Adaptive Dynamic Programming
• Run value iteration using estimated rewards and transition probabilities



Adaptive Dynamic Programming
• Run value iteration using estimated rewards and transition probabilities

RIGHT UP

Action Result

RIGHT RIGHT

RIGHT RIGHT

RIGHT DOWN

RIGHT RIGHT



Adaptive Dynamic Programming
• Run value iteration using estimated rewards and transition probabilities

Estimate of 

Ui+1(s) R(s) + � max

a2A(s)

X

s0

P (s0|s, a)Ui(s
0
)

Estimate of 



Temporal-Difference Learning
U⇡(s) = R(s) + �

X

s0

P (s0|s,⇡(s))U⇡(s0)

U⇡(s) U⇡(s) + ↵(R(s) + �U⇡(s0)� U⇡(s))

U⇡(s) = R(s) + �Es0 [U
⇡(s0)]

U⇡(s) = Es0 [R(s) + �U⇡(s0)]

observed utility

current estimate of utilitylearning rate parameter



Temporal-Difference Learning
U⇡(s) U⇡(s) + ↵(R(s) + �U⇡(s0)� U⇡(s))

Run each time we transition from state s to s’

Converges slower than ADP, but much simpler update.

Leads to famous q-learning algorithm (next video)



Passive Learning
• Recordings of agent running fixed policy 

• Observe states, rewards, actions 

• Direct utility estimation 

• Adaptive dynamic programming (ADP) 

• Temporal-difference (TD) learning


