Passive Reinforcement Learning

Bert Huang Introduction to Artificial Intelligence

Notation Review

• Recall the Bellman Equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

alternate version $U(s) = \max_{a \in A(s)} R(s, a)$

$$) + \gamma \sum_{s'} P(s'|s, a) U(s')$$

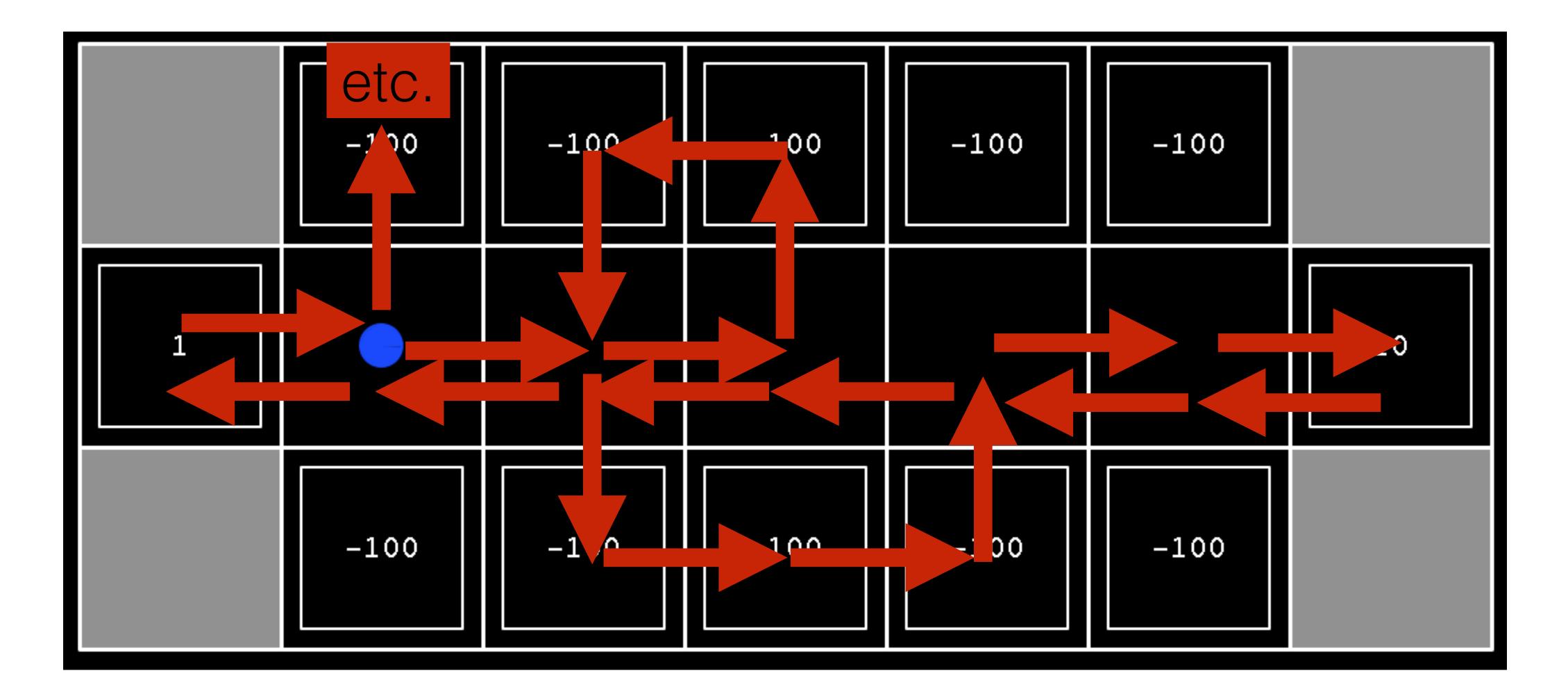
 $\pi^*(s) = \underset{a \in A(s)}{\operatorname{arg max}} \sum_{s'} P(s'|s, a) U(s')$

Value Iteration Drawbacks

- Computes utility for every state
- Needs exact transition model
- Needs to fully observe state

Needs to know exact reward for each state

Slippery Bridge



Value Iteration

States and rewards

Transitions

Decisions

Observes all states and rewards in environment

Observes all actiontransition probabilities

N/A

Passive Learning

Active Learning

Observes only states (and rewards) visited by agent Observes only states (and rewards) visited by agent

Observes only transitions Observes only transitions that occur from chosen that occur from chosen actions actions

Learning algorithm does not choose actions

Learning algorithm chooses actions

Passive Learning

- Recordings of agent running fixed policy
- Observe states, rewards, actions
 - Direct utility estimation
 - Adaptive dynamic programming (ADP)
 - Temporal-difference (TD) learning

 $U^{\pi}(s) = R(s) + \gamma \sum_{i=1}^{n} \frac{1}{2} \sum_{i$

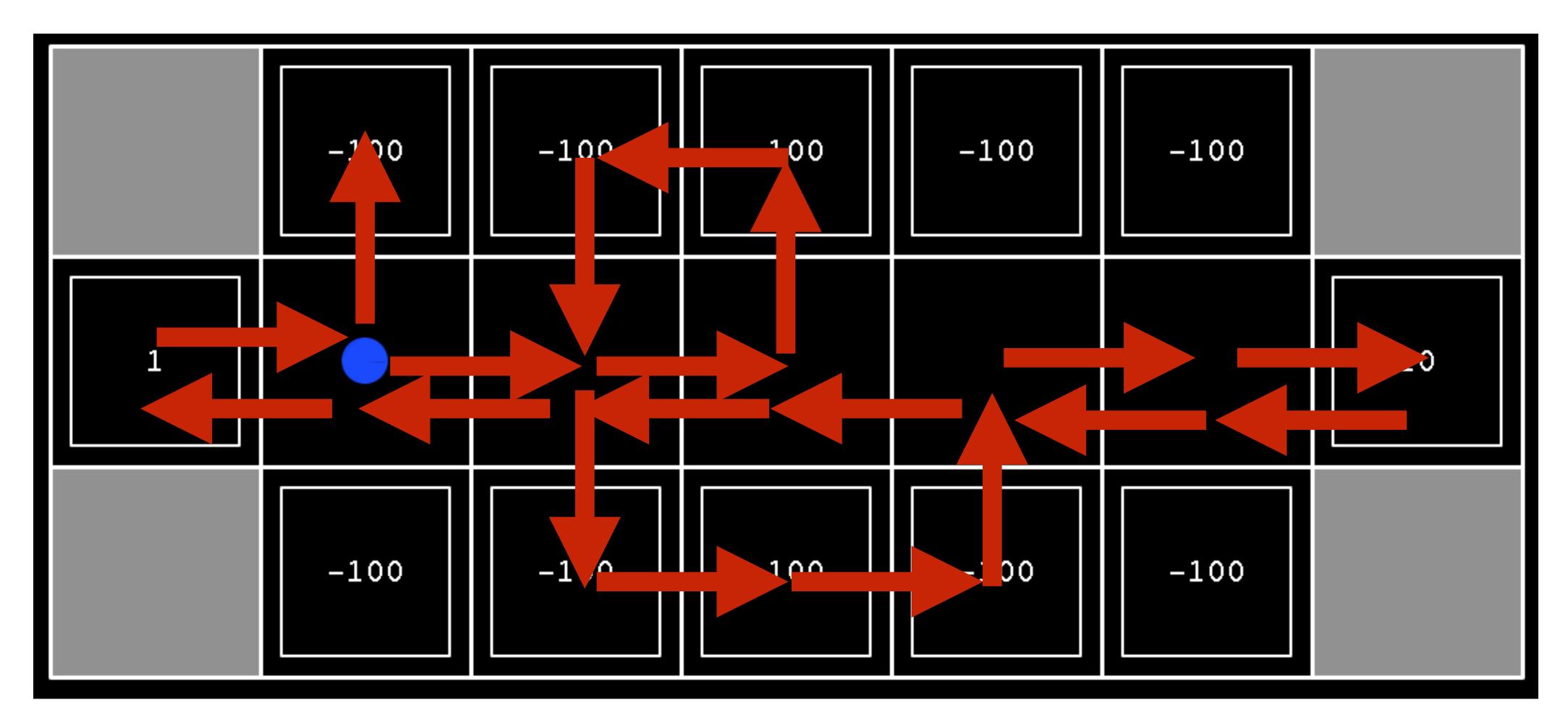
future reward of state assuming we use this policy

Direct utility estimation: use observed rewards and future rewards to estimate U (i.e., take average of samples from data)

Direct Utility Estimation $U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$

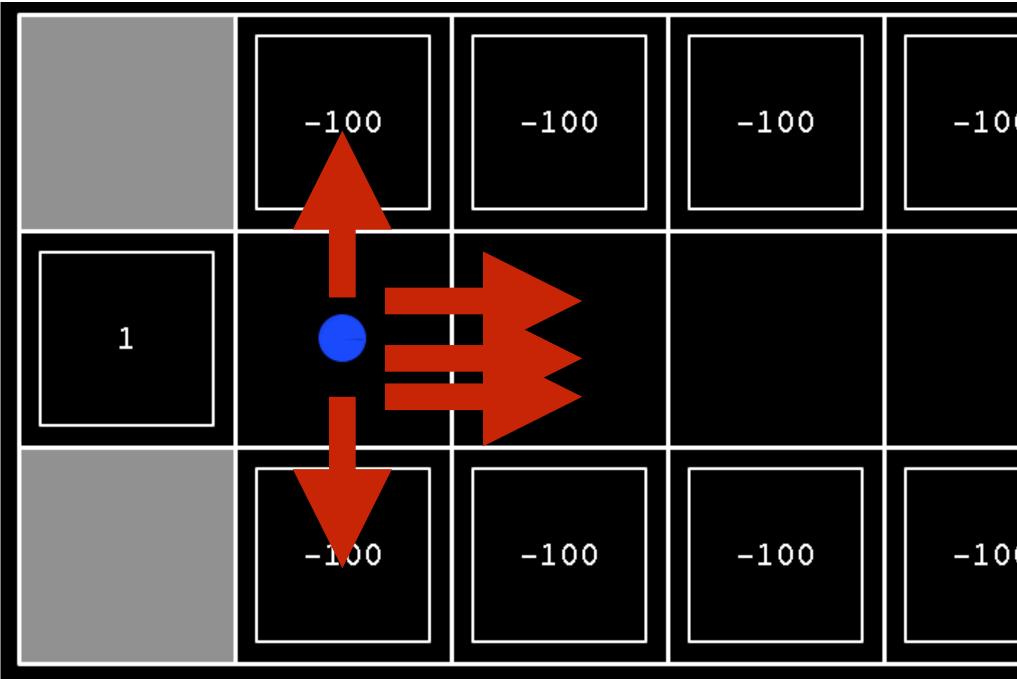
$$P(s'|s, \pi(s))U^{\pi}(s')$$

Adaptive Dynamic Programming



Run value iteration using estimated rewards and transition probabilities

Adaptive Dynamic Programming



Run value iteration using estimated rewards and transition probabilities

)0	-100		
		10	ŀ
)0	-100		F

Action	Result	
RIGHT	UP	
RIGHT	RIGHT	
RIGHT	RIGHT	
RIGHT	DOWN	
RIGHT	RIGHT	

Adaptive Dynamic Programming

Estimate of $U_{i+1}(s) \leftarrow R(s) + \gamma$

Run value iteration using estimated rewards and transition probabilities

Estimate of

$$\max_{a \in A(s)} \sum_{s'} \frac{P(s'|s, a) U_i(s')}{s'}$$

Temporal-Difference Learning $U^{\pi}(s) = R(s) + \gamma \sum P(s'|s, \pi(s)) U^{\pi}(s')$

$U^{\pi}(s) = R(s) + \gamma$

$U^{\pi}(s) = \mathbf{E}_{s'}[R(s)]$

learning rate parameter $U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha($

s'

$$\mathbf{E}_{s'}[U^{\pi}(s')]$$

$$+\gamma U^{\pi}(s')]$$

current estimate of utility

$$R(s) + \gamma U^{\pi}(s') - U^{\pi}(s)$$

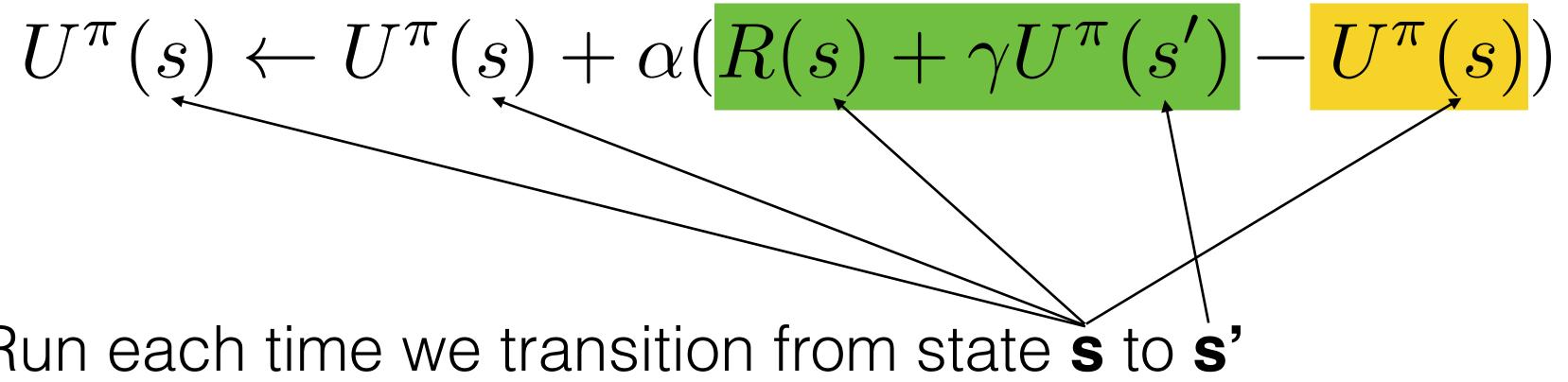
observed utility

Temporal-Difference Learning

Run each time we transition from state s to s'

Converges slower than ADP, but much simpler update.

Leads to famous q-learning algorithm (next video)



Passive Learning

- Recordings of agent running fixed policy
- Observe states, rewards, actions
 - Direct utility estimation
 - Adaptive dynamic programming (ADP)
 - Temporal-difference (TD) learning