CS 4604: Introduction to
Database Management Systems

Query Optimization

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

VIRGINIA
TECH.

Today’s Topics

* Query Optimization

VIRGINIA
TECH.

Query Parsing & Optlmlzatlon

: Select *

. From Blah B ‘>

. Where B.blah = blah

Query Parser

Query Rewriter

v

Query Optimizer

/—\

Plan
Generator

Plan Cost
Estimator

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

A

~~_

v

Query Plan Executor

A 4

Catalog Manager

Schema
& Statistics

-~

VIRGINIA
TECH.

Query Parsing & Optimization

« Query parser
« Check correctness,
authorization
« (Generates a parse tree
« Straightforward

* Query rewriter
« Converts queries to
canonical form
« flatten views
« subqueries into fewer

query blocks
» Weak spot in many open-source
DBMSs

Select *
: From Blah B
. Where B.blah = blah

Query Rewriter

v

Query Parser

Query Optimizer

/\‘

Plan
Generator

Plan
Cost

Estimator

-

v

Query Plan Executor

Catalog Manager

Schema
&
Statistics

VIRGINIA
TECH.

Query Parsing & Optimization

« “Cost-based” Query Optimizer
« Optimizes 1 query block at a
time
« Select, Project, Join
« GroupBy/Agg
* Order By (if top-most
block)
» Uses catalog stats to find least-
“cost” plan per query block
« “Soft underbelly” of every
DBMS
« Sometimes not truly

“‘optimal”

Select * '
: From Blah B
. Where B.blah = blah

Query Rewriter

v

Query Parser

Query Optimizer

/\‘

Plan
Generator

Plan
Cost

Estimator

-

v

Query Plan Executor

Catalog Manager

Schema
&
Statistics

VIRGINIA
TECH.

Query Optimization Overview

* Query block can be converted to relational algebra
« Relational algebra converts to tree

« Each operator has implementation choices

* Operators can also be applied in different orders!

SELECT S.sname

FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100

AND S.rating>5

\

7t(sname)G(bid=1OO A rating > 5)
(Reserves > Sailors)

Obid=100

Dqsid:sid

PAGE NESTED LOOPS

Reserves
SCAN

VIRGINIA
TECH.

Query Optimization: The Components

» Three beautifully orthogonal concerns:

— Plan space:
 for a given query, what plans are considered?

— Cost estimation:
* how is the cost of a plan estimated?

— Search strategy:
* how do we “search” in the “plan space”?

VIRGINIA
TECH.

Query Optimization: The Goal

* Optimization goal:
— ldeally: Find the plan with least actual cost.

— Reality: Find the plan with least estimated cost.
* And try to avoid really bad actual plans!

VIRGINIA
TECH.

Query Optimization: Example Hash join;

», merge join;

n n // nested loops;
I : | K
o Canonical form >
> \ Index; seq scan
o :
/N |
STUDENT TAKES STUDENT TAKES

Canonical Form has the following properties:

1. Push Selections as much as possible.

2. Push Projections as much as possible

3. ltis aleft-deep join tree (we will see this later)

Relational Algebra Equivalences

e Selections:

— Gcin..aen(R) = 0¢q(...(0cn(R))...) (cascading)
— 041(0c2(R)) = 0c2(064(R)) (commutative)

* Projections:
- Tca1(R) = na1(---(na1, an-1(R))---) (cascading)

VIRGINIA
TECH.

Relational Algebra Equivalences

e Cartesian Product
— Rx(SxT)=(RxS)xT (associative)

-~ RxS=S xR (commutative)

« Join
-~ RPA(SPAT)=(RPAS) BT (associative)
-~ RDPDIS=S PAR (commutative)

VIRGINIA
TECH.

Are Joins Associative and Commutative?

« After all, just Cartesian Products with Selections
* You can think of them as associative and commutative...
» ...But beware of join turning into cross-product!

— Consider R(a,z), S(a,b), T(b.Y) [cprmer »
FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b;

— (S ™po, T) M-, R E S ., (T ™., R) (not legalll)
— (S ™, T) ¥, RZES ™, (T x R) (not the same!!)
— (S, T)X,_. R=S X, , .-, (T x R) (the same!!)

VIRGINIA
TECH.

Join Ordering

« Similarly, note that some join orders
have cross products, some don’t

« Equivalent for the query above:

SELECT *
() () FROM R, S, T
(o) (D RO () WHERE R.a = S.a
(R[XlazaS)[lesz R[Xla:a(SNb:bT)
GO (b (x)
3 D D D
R > a=a (T ™ b=b S) (RxT)xa=anb=bS
VIRGINIA

TECH.

(Some) Transformation Rules (1)

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

Oy, (E) =0, (0, (E))
2. Selection operations are commutative.

o, (0, (L) =0, (0o, (L))

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

I1, (I, (...(T,, (E))..)) =11, (E)

4. Selections can be combined with Cartesian products and
theta joins.
co(E1 X Ep) = E4 X g Ey
o1(E1X 62 E) = B4 M g1, 62 Es

VIRGINIA
TECH.

(Some) Transformation Rules (2)

9. Theta-join operations (and natural joins) are commutative.
EXgy E, = E, Ne E,

6. (a) Natural join operations are associative:
(E4 WE,) XE; = E; X(E; X Ey)

(b) Theta joins are associative in the following manner:

(E1 X g1 E2) W 920 03 E3 = E1 X g1 93 (E2 X g2 E3)

where 6, involves attributes from only E, and E,.

VIRGINIA
TECH.

(Some) Transformation Rules (3)

7. The selection operation distributes over the theta join operation
under the following two conditions:
(@) When all the attributes in 6, involve only the attributes of one
of the expressions (E4) being joined.

Seo(E4 X g Ez) = (ogo(E4))X g E,

(b) When 6 , involves only the attributes of E, and 6, involves
only the attributes of E,.

Go1/gr (E1X g E) = (og4(E4)) X5 (04, (E))

VIRGINIA
TECH.

Some Common Heuristics: Selections

» Selection cascade and pushdown

— Apply selections as soon as you have the relevant
columns
— EX:

* Tsname (G(bid:100 A rating > 5) (RGSGI’VGS > sid=sid Sailors))
* Tsname (Gbid:100 (RGSGFVGS) > sid=sid O rating > 5 (Sailors))

VIRGINIA
TECH.

Some Common Heuristics: Projections

* Projection cascade and pushdown

— Keep only the columns you need to evaluate
downstream operators
— EX:
* TlsnameO (bid=100 A rating > 5) (RE€SErVes X gig_sig Sailors)
* Tlgname (Tsid(Obid=100 (R€SErVES)) Dsig=sid Tsname sid (O rating > 5 (Sailors)))

VIRGINIA
TECH.

Some Common Heuristics

» Avoid Cartesian products

— Given a choice, do theta-joins rather than cross-
products

— Consider R(a,b), S(b,c), T(c,d)
— Favor(R< S)x Tover(RxT) xS

VIRGINIA
TECH.

Query Parsing & Optlmlzatlon

. Select * |
: . From Blah B _} e ——
. Where B.blah = blah

heuristics-based
rewriting step before
the cost-based steps.

Query Rewriter

v

Query Optimizer

A
A 4

Catalog Manager

Schema
& Statistics

-~

v

Query Plan Executor

VIRGINIA
TECH.

Schema for Examples

Sailors (sid: integer, sname: text, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: date, rname: text)

 Reserves:
— Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
— Assume there are 100 boats

« Sailors:
— Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
— Assume there are 10 different ratings

« Assume we have 5 pages to use for joins.

VIRGINIA
TECH.

Motivating Example: Plan 1

Here’s a reasonable query plan:

On-the-fly
On-the-fly
On the-fly

snd sid
PAGE NESTED LOOPS

SELECT S.sname

FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100

AND S.rating>5

VIRGINIA
TECH.

Motivating Example: Plan 1 Cost

On-the-fly
On-the-fly

On the-fly

s id=sid
PAGE NESTED LOOPS

Let’s estimate the cost:
Scan Sailors (500 IOs)
For each page of Sailors,
Scan Reserves (1000 10s)

Total: 500 + 500*1000
— 500,500 I10s

Bad plan!

Goal of optimization:

— Find less cost (faster) plan that
compute the same answer

VIRGINIA
TECH.

Plan 2: Selection Pushdown

Obid=100

D qsid:sid
PAGE NESTED LOOPS

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

500,500 IOs

Ohid=100
Dqsid=sid

PAGE NESTED
LOOP

Grating >5
A

Sailors
SCAN

Reserves
SCAN

VIRGINIA
TECH.

Plan 2 Cost Analysis

e Let's estimate the cost:
« Scan Sailors (500 10s)

* For each pageful of high-rated Sailors,
Scan Reserves (1000 10s)

 Total: 500 + 250*1000 = 250,500 IOs

VIRGINIA
TECH.

Plan 3: More Selection Pushdown

Tcsname
A

Nsid=sid

PAGE NESTED
LOOPS
Obid=100
A
Reserves
SCAN

Dqsid=sid

PAGE NESTED

250,500 IOs

VIRGINIA
TECH.

Plan 3 Cost Analysis

 Let's estimate the cost:
e Scan Sailors (500 10s)

* For each pageful of high-rated
Sailors,

Scan Reserves (1000 10s) ~
‘

« Total: 500 + 250*1000 = 250,500 10s

VIRGINIA
TECH.

More Selection Pushdown Analysis

Pushing a selection into the inner
loop of a nested loop join doesn’t
save I/Os! Essentially equivalent

to having the selection above.
Tlsname
A

[><] sid=sid

PAGE NESTED
LOOPS

Ohid=100

D<]sid=sid

PAGE NESTED
LOOP

Ohid=100

Reserves
SCAN

250,500 IOs

Grating >5
A

Sailors Reserves
SCAN SCAN

250,500 IOs

VIRGINIA
TECH.

Plan 4: Join Ordering

[><]sid=sid

PAGE NESTED
LOOP

csrating >5
A

Sailors Reserves
SCAN SCAN

250,500 IOs

Nsid=sid

PAGE NESTED
LOOPS

cTrating >5

Reserves Sailors
SCAN SCAN

VIRGINIA
TECH.

Plan 4 Cost Analysis

e |Let's estimate the cost:
Scan Reserves (1000 IOs)

For each pageful of Reserves
for bid 100,
Scan Sailors (500 IOs)

Total: 1000 +10*500 = 6000 10s

VIRGINIA
TECH.

Plan 5: Materializing Inner Loops

M sid=sid
PAGE NESTED
Q0P

Obid=100
A
Reserves Sailors
SCAN SCAN

Grating >5

6000 IOs

Ohid=100

A
Reserves
SCAN

Dqsid=sid

PAGE NESTED

QOP.

cyrating >5
7'}

Sailors
SCAN

VIRGINIA
TECH.

Plan 5 Cost Analysis

« Let's estimate the cost:

« Scan Reserves (1000 IOs)

e Scan Sailors (500 10s)

» Materialize Temp table T1 (250 10s)

* For each pageful of Reserves for bid
100,
Scan T1 (250 10s)

« Total: 1000 + 500+ 250 + (10 * 250)
= 4250 IOs

VIRGINIA
TECH.

Plan 6: Join Ordering Again

Plsig=sid
PAGE NESTED
LOOPS

Obid=100
A

Reserves
SCAN

cYrating >5
A

Sailors
SCAN

4250 IOs

Plsig=sid
PAGE NESTED
LOOPS

Orating > 5 mat

A A

Sailors
<:::::;;;;:::::> Gbid=100

VIRGINIA
TECH.

Plan 6 Cost Analysis

« Let's estimate the cost:

e Scan Sailors (500 10s)

« Scan Reserves (1000 IOs)

« Materialize Temp table T1 (10 10s)
* For each pageful of high-rated

Sai |OI'S, Gbig=100

Scan T1 (10 10s)

 Total: 500 + 1000 +10 +(250 *10)
= 4010 IOs

VIRGINIA
TECH.

Plan 7: Join Algorithm

SORT MERGE JOIN

ESTED LOOPS

PAGE N

CHD RN
o
fbd T
SCAN

4010 IOs

at
A
id=

VIRGINIA
TECH.

Plan 7 Cost Analysis

« With 5 buffers, cost of plan:
« Scan Reserves (1000)
« Scan Sailors (500)

« Sort high-rated sailors

Note: pass 0 doesn’t do read I/O, just gets input from select.

SORT MERGE JOIN

Ohid=100

e Sort reservations for boat 100 I

Note: pass 0 doesn’t do read I/O, just gets input from select. @
* Merge (10+250) = 260
« Total: sum above

VIRGINIA
TECH.

Plan 7 Cost Analysis

« With 5 buffers, cost of plan:
* Scan Reserves (1000)
« Scan Sailors (500)

e Sort reservations for boat 100

SORT MERGE JOIN

— 2 passes for reserves ,
pass 0 = 10 to write, pass 1 = 2*10 to read/write

A

« Sort high-rated sailors I

— 4 passes for sailors SCAN

pass 0 = 250 to write, pass 1,2,3 = 2*250 to read/write

Merge (10+250) = 260

1000 + 500 + sort reserves(10 + 2*10* 1) + sort sailors
(250 + 2*250%3) + merge (10+250) = 3540 10s

VIRGINIA
TECH.

Join Algorithm and Materializing Inner Loops

SORT MERGE JOIN

rating > 'y
SCAN
Reserves
3540 10s Czr >

VIRGINIA
TECH.

Plan 8 Cost Analysis

« With 5 buffers, cost of plan:
« Scan Sailors (500), write T1 (250)

. Scan Reserves (1000), write T2 (10)
« SortT1
mat_ D _mat_

e SortT2

 How many passes for each sort?
— 2 passes for reserves (21072 to read/write)

— 4 passes for sailors (2*250*4 to read/write) @ Gbid;@
. Merge (10+250) = 260 f

+ Total: & R
1000 + 500 + 10 + 250 + 2*10*2 +
2:250*4 + merge (10+250) = 4060 10s

VIRGINIA
TECH.

Another Join Algorithm

Dqsid=sid

PAGE NESTED LOOPS BLOCK NESTED LOOP

y A

Sailors Sailors
SCAN Obid=100 SCAN Ohid=100

4010 IOs

VIRGINIA
TECH.

Plan 9 Cost Analysis

With 5 buffers, cost of plan:

Scan Sailors (500)
Scan Reserves (1000)

Write Temp T1 (10)

For each blockful of high-rated sailors
Loopon T1 (] [Sp)/(B-2) 1 *[T])

Total:

500 + 1000 +10 +(ceil(250/3) *10) = 500 +
1000 +10 +(84 *10) = 2350 10s

A

Sailors
SCAN

Dxﬂsw=sm

BLOCK NESTED LOOP

Ohid=100

VIRGINIA
TECH.

How About Indexes?

 |Indexes:
— Reserves.bid clustered
— Sailors.sid unclustered

* Assume indexes fit in memory

Reserves: bid Sailors

bid = 100 (on 10 pages)

VIRGINIA
TECH.

Index Cost Analysis

No projection pushdown to left for Tlg,3me

— Projecting out unnecessary fields from

outer of Index NL doesn’t make an 1/O difference. ©
Grating> 5

No selection pushdown to right for G 4ting > 5
— Does not affect Sailors.sid index lookup

With clustered index on bid of Reserves, we access

how many pages of Reserves?:
— 100,000/100 = 1000 tuples on 1000/100 = 10

Reserves
INDEX SCAN
pages.

Join column sid is a key for Sailors. 1010 IOs
— At most one matching tuple, unclustered index on sid OK

D<lsid=sid

INDEX NEST LOOP

Sailors
INDEX SCAN

VIRGINIA
TECH.

Index Cost Analysis Part 2

With clustered index on bid of Reserves, we access how many

pages of Reserves?:

— 100,000/100 (boats) = 1000 tuples on 1000/100 = 10
pages.

for each Reserves tuple 1000
get matching Sailors tuple (1 10)

(recall: 100 Reserves per page, 1000 pages)
10 + 1000*1 = 1010 IOs

Cost: Selection of Reserves tuples (10 1/Os); then, for
each, must get matching Sailors tuple (1000); total 1010
l/Os.

A

D<]sid=sid

INDEX NEST LOOP

I Sailors

bid=100 INDEX SCAN
Reserves
INDEX SCAN

1010 IOs

VIRGINIA
TECH.

Summing up

* There are lots of plans
— Even for a relatively simple query

* Not so clear that's true!
— Manual query planning can be tedious, technical

— Machines are better at enumerating options than people
* Hence Al

— We will see soon how optimizers make simplifying assumptions

VIRGINIA
TECH.

Query Optimization

Given: A closed set of operators
» Relational ops (table in, table out)
* Physical implementations (of those ops and a few more)

Plan space
« Based on relational equivalences, different implementations
Cost Estimation based on
» Cost formulas
« Size estimation, in turn based on
« (Catalog information on base tables
« Selectivity (Reduction Factor) estimation
A search algorithm
» To sift through the plan space and find lowest cost option!

A Naive Query Optimizer

« Given an input query Q:
1. Enumerate all possible plans for Q
* Too many plans to consider!

2. Estimate the cost of each plan
« Hard to estimate cost accurately given caches etc.
3. Pick plan with the lowest cost

« How? Keep all plans in memory?
« What if there are million alternative ways of executing the Q?

VIRGINIA
TECH.

The System R Optimizer

* Plan Space
— Many plans have the same high cost subtree that can be pruned

— Heuristics(aka tricks that usually work):

« Consider only left-deep plans
* Avoid Cartesian products
* Don’t optimize the entire query at once

 (Cost estimation

— Inexact is fine as long as we can compare plans
» Better estimators have been developed

« Search Algorithm

— Dynamic Programming

VIRGINIA
TECH.

Query Optimization

1. Plan Space
2. Cost Estimation

3. Search Algorithm

VIRGINIA
TECH.

e GROUP BY S2.rating)

Query Blocks: Units of Optimization

* Break query into query blocks
* Optimize one block at a time
* Uncorrelated nested blocks computed once

 Correlated nested blocks are like function calls
— But sometimes can be “decorrelated”
— Recall relational algebra lecture

SELECT S.sname
FROM Sailors S
WHERE S.age IN

Outer block

(SELECT MAX (SZ2.age)
FROM Sailors S2

Nested block

VIRGINIA
TECH.

Query Blocks: Units of Optimization

* For each block, the plans considered are:

— All relevant access methods, for each relation in
FROM clause
— All left-deep join trees
* right branch always a base table
« consider all join orders and join methods

>
SELECT S.§name Outer block
FROM Sailors S
WHERE S.age IN /><|\ D
(SELECT MAX (S2.age) | wested block N c
FROM Sailors S2 ////\\\
I GROUP BY S2.rating) A B

VIRGINIA
TECH.

Schema for Examples

Sailors (sid: integer, sname: text, rating: integer,
age: float)
Reserves (sid: integer, bid: integer, day: date,
rname: text)
 Reserves:
— Each tuple is 40 bytes long,
— 100 tuples per page, 1000 pages.
— 100 distinct bids.

« Sailors:
— Each tuple is 50 bytes long,
— 80 tuples per page, 500 pages.
— 10 ratings, 40,000 sids.

VIRGINIA
TECH.

“Physical” Properties

Two common “physical” properties of an output:

— Sort order

— Hash Grouping

Certain operators produce these properties in output

— E.g., Index scan (result is sorted)

— E.g., Sort (result is sorted)

— E.g., Hash (result is grouped)

Certain operators require these properties at input

— E.g., MergedJoin requires sorted input

Certain operators preserve these properties from inputs

— E.g., MergedJoin preserves sort order of inputs
— E.g., Index nested loop join (INLJ) preserves sort order of outer (left)

input

VIRGINIA
TECH.

Physically Equivalent Plans

« Same content and same physical properties

t 1sid=sid
GRACE HASH JOIN

Reserves
SCAN

[: 1sid=sid
SORT MERGE JOIN

Reserves
SCAN

VIRGINIA
TECH.

Queries Over Multiple Relations

« A System R heuristic: only left-deep join trees
considered

— Restricts the search space

— Left-deep trees allow us to generate all fully pipelined plans
* i.e., intermediate results not written to temporary files
* Not all left-deep trees are fully pipelined (e.g., SM join).

A B

VIRGINIA

Linear tree Bushy tree VIRGH

Left-deep tree

Plan Space Review
* Fora SQL query, full plan space:

— All equivalent relational algebra expressions
» Based on the equivalence rules we learned
— All mixes of physical implementations of those algebra
expressions
* We might prune this space:
— Selection/Projection pushdown
— Left-deep trees only
— Avoid Cartesian products
» Along the way we may care about physical properties
like sorting
— Because downstream ops may depend on them
— And enforcing them later may be expensive

VIRGINIA
TECH.

Query Optimization

1. Plan Space
2. Cost Estimation

3. Search Algorithm

VIRGINIA
TECH.

Cost Estimation

 For each plan considered, must estimate total cost:

— Must estimate cost of each operation in plan tree
» Depends on input cardinalities.
* sequential scan, index scan, joins, etc.

» Must estimate size of result for each operation in tree!
— Because it determines downstream input cardinalities!
— Use information about the input relations.
— For selections and joins, assume independence of predicates.
* In System R, cost is boiled down to a single number
consisting of #//O + CPU-factor * #tuples

— Second term estimate the cost of tuple processing

VIRGINIA
TECH.

Statistics and Catalogs

. Need info on relations and indexes involved.
« Catalogs typically contain at least:

statistic | Meaning

NTuples # of tuples in a table (cardinality)
NPages # of disk pages in a table
Low/High min/max value in a column
Nkeys # of distinct values in a column
IHeight the height of an index

INPages # of disk pages in an index

« Catalogs updated periodically.
— Too expensive to do continuously
— Lots of approximation anyway, so a little slop here is ok.
. Modern systems do more
— Especially keep more detailed statistical information on data values. e.g., histograms

VIRGINIA
TECH.

m min Filev ctv Toolsv Helpv
Browser § BB Y& Q Dashboard Properties SQL Statistics Dependencies Dependents & cslabs/cs4604...
v 3 Servers (3)
> =cs4604 Statistics Value
> Ecslabs
v @eslabs Sequential scans 121
v £ Databases (3) Sequential tuples read 302497
v Seslabs Index scans 6551
> [Casts
> g Extensions Tuples inserted 2819
> = Foreign Data Wrappers Dashboard Properties Dependencies Dependents §§ cslabs/cs4604...
) Tuples updated 0
> ©7Languages
99 Schi 1 Tuples deleted 0 -
v @ Schemas (1) Statistics Value
v & public Tuples HOT updated 0
> 4 Collati)
51 Colla '_ons Live tuples 2819 Null fraction 0.230933
> gy Domains
> [[}FTS Configurations Dead tuples 0 Average width 4
>[I} FTS Dictionaries
Heap blocks read 185 et
> AaFTS Parsers Distinct values 15
Heap blocks hit 22576
> [CIFTS Templates P Most common values {2,0,1,3,4,5,6,10,7,8,9}
> [F] Foreign Tables Index blocks read 14
> {3 Functions) Most common frequencies 0.139056,0.122384,0.12061,0.11458,0.0865555,
Index blocks hit 18446
> 1.3Sequences i
« EiTables (21) Toast blocks read 0 Histogram bounds {11,12,12,50}
> [agents Toast blocks hit 0 Correlation 0.114016
> FHbasic_cards R
. Toast index blocks read 0
> [basic_cards4
> [big_cards Toast index blocks hit 0
> Eboats Last vacuum
> Fcards
Last autovacuum
> 5 customer
> 5 dust_costs Last analyze
> Edentourages Last autoanalyze 2021-01-17 21:36:05.210055+00
> 9 mechanics
> EHorders Vacuum counter 0
> 5 people Autovacuum counter 0
> Epersons Analyze counter 0
> [play_requirements
> 9 product Autoanalyze counter 1
> Hreserves Table size 488 kB
> Bsailors Toast table size 8192 bytes
> [supplier Y VI RG I N IA
> 5 supplies Indexes size 112 kB
s TECH.

Size Estimation and Selectivity

« Max output cardinality = product of input the cardinalities

of the relations in FROM

« Selectivity (sel) associated with each term in WHERE

— Reflects the impact of the term in reducing result size.

— Selectivity = |output| / |input|

— Selectivity: “Reduction Factor” (RF)

— Always between 0 and 1

SELECT attribute list
FROM relation list
WHERE terml AND ...

AND termk

VIRGINIA
TECH.

Result Size Estimation

« Result cardinality = Max # tuples * product of all
selectivities.

« Term col=value (given Nkeys(col) unique values of col)
— sel = 1/NKeys(col)
« Term col1=col2 (handy for joins too...)
— sel = 1/MAX(NKeys(col1), NKeys(col2))
* Term col>value
— sel = (High(col)-value)/(High(col)-Low(col))
« Termin
— sel = 1/NKeys(col) * # items in the list

VIRGINIA
TECH.

/%

*x Note: the default selectivity estimates are not chosen entirely at random.
* We want them to be small enough to ensure that indexscans will be used if
* available, for typical table densities of ~100 tuples/page. Thus, for

* example, 0.01 is not quite small enough, since that makes it appear that
* nearly all pages will be hit anyway. Also, since we sometimes estimate

*x eqsel as 1/num_distinct, we probably want DEFAULT_NUM_DISTINCT to equal

* 1/DEFAULT_EQ_SEL.

*/

/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.005

/* default selectivity estimate for inequalities such as "A < b" x/
#define DEFAULT_INEQ_SEL ©.3333333333333333

/* default selectivity estimate for range inequalities "A > b AND A < c" %/
#define DEFAULT_RANGE_INEQ_SEL 0.005

/* default selectivity estimate for multirange inequalities "A > b AND A < c" %/
#define DEFAULT_MULTIRANGE_INEQ_SEL 0.005

/* default selectivity estimate for pattern-match operators such as LIKE x/
#define DEFAULT_MATCH_SEL 0.005

/* default selectivity estimate for other matching operators x*/
#define DEFAULT_MATCHING_SEL 0.010

/* default number of distinct values in a table */
#define DEFAULT_NUM_DISTINCT 200

/* default selectivity estimate for boolean and null test nodes x/
#define DEFAULT_UNK_SEL 0.005
#define DEFAULT_NOT_UNK_SEL (1.0 — DEFAULT_UNK_SEL)

postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres

VIRGINIA
TECH.

https://github.com/postgres/postgres
https://github.com/postgres/postgres/tree/master/src
https://github.com/postgres/postgres/tree/master/src/include
https://github.com/postgres/postgres/tree/master/src/include/utils

Reduction Factors & Histograms

Distribution D

-
o

o - N w N (3, [e)] ~ [o1] [(e]
L L

01234567 891011121314

Uniform distribution approximating D

-
o

o - N w N (3, [e)] ~ [o1] [(e]
| L L ,

01234567 891011121314

VIRGINIA
TECH.

Reduction Factors & Histograms
Equiwidth histogram

10

9

8

LR LNl

0
01 2 4 5 6 78 10111213 14

Equidepth histogram ~ quantiles

Bucket 1 Bucket2 Bucket3 Bucket4 Bucket5
Count=8 Count=4 Count=15 Count=3 Count=15

10

9

8

0
Q 1 2 3}(1 56 7}8 9. 10111213 14

_ﬂ_ﬂ_w_

y—'Y

Y
Bucket1 Bucket2 Bucket3 Bucket4 Bucket?5
Count=9 Count=10 Count=10 Count=7 Count=9

VIRGINIA
TECH.

Selectivity Example: Join Selectivity

R b, 74(S)

algebraic equivalence: R M, S = g,(R x)
Join selectivity is selectivity s, === Total rows: s, x |R| x ||

R b, 04(S) = 0(R x 04(S)) = 7R x)

p/\q

Join selectivity is selectivity s,s, === Total rows: s;s, x |R| x S

VIRGINIA
TECH.

Selectivity Example: Column Equality

T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

allllly I

40 60 80 100 120 140 5 15 25 35 45 55

p = # potatoes consumed per yr age

VIRGINIA
TECH.

Selectivity Example: Column Equality

T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

T.p = T.age

=(T.p=40AT.age=40)v(T.p=41AT.age=41) v (T.p =42 A T.age = 42) ...
=(T.p =40 AT.age =40) + (T.p =41 A T.age = 41) + (T.p =42 A T.age = 42) ...
=(T.p=40*T.age =40) + (T.p =41 *T.age =41) + (T.p =42 * T.age = 42) ...

Independence assumption

(T.p = 40) (T.age = 40)
_height(bin,(40)) _height(bin,,(40)) Unif ti
= Width®in@0) " n ~ wWidthbin (40)* n o cssumpren

Just add up all the values...

VIRGINIA
TECH.

Compute Selectivities

Know how to compute selectivities for basic predicates
— The System R version
— The histogram version
Assumption 1: uniform distribution within histogram bins
— Within a bin, fraction of range = fraction of count
Assumption 2: independent predicates
— Selectivity of AND = product of selectivities of predicates

— Selectivity of OR = sum of selectivities of predicates - product of
selectivities of predicates

— Selectivity of NOT = 1 — selectivity of predicates
Joins are not a special case

— Simply compute the selectivity of all predicates

— And multiply by the product of the table sizes

VIRGINIA
TECH.

Summary: Selectivity Estimation

 We need a way to estimate the size of the intermediate tables
Recall cost of each operator =

I/Os (to bring in input) + CPU-factor * # tuples processed

Output size = input size * operator selectivity

System R

col=value
* 1/unig-keys(col)

coll=col2
« 1/MAX(unig-keys(col1),
unig-keys(col2))

col>value
High(col) - value
High(col) - Low(col) + 1

Histogram

* col=value
bar height containing value

values contained in bar

 coll=col2

* Breakdown into
(colt =vi Acol2=v1)V
(colt =v2Acol2=Vv2)V ...

e col>value
sum of bar heights >value
total number of rows

VIRGINIA
TECH.

Summary: Selectivity Estimation

* |n both cases, for more complex predicates:
— p1Ap2
 selectivity(p1) * selectivity(p2)
— plvp2
 selectivity(p1) + selectivity(p2) — (selectivity(p1) *
selectivity(p2))
« Lasttermis O if p1 and p2 are non-overlapping (e.g.,
age>60 OR age<21)

— Not p1 =1 — selectivity(p1)

VIRGINIA
TECH.

Query Optimization

1. Plan Space
2. Cost Estimation

3. Search Algorithm

VIRGINIA
TECH.

Enumeration of Alternative Plans

* There are two main cases:
— Single-table plans (base case)
— Multiple-table plans (induction)

« Single-table queries include selects, projects, and
GroupBy/aggregation:
— Consider each available access path (file scan / index)
« Choose the one with the least estimated cost
— Selection/Projection done on the fly

— Result pipelined into grouping/aggregation

VIRGINIA
TECH.

Cost Estimates for Single-Relation Plans

* Index | on primary key matches selection:
— Costis (Height(l) + 1) + 1 for a B+ tree.

« Clustered index | matching selection:
— (NPages(l)*NPages(R)) * selectivity.

* Non-clustered index | matching selection:
— (NPages(l)*NTuples(R)) * selectivity.

« Sequential scan of file:
— NPages(R).

« Recall: Must also charge for duplicate elimination if required

VIRGINIA
TECH.

Example

SELECT S.sid

FROM Sailors S
WHERE S.rating=8

If we have an index on rating:
Cardinality = (1/NKeys(l)) * NTuples(R) = (1/10) * 40000 tuples

Clustered index: (1/NKeys(l)) * (NPages(l)+NPages(R))

= (1/10) * (50+500) = 55 pages are retrieved. (This is the cost.)

Unclustered index: (1/NKeys(l)) * (NPages(l)+NTuples(R))
= (1/10) * (50+40000) = 4005 pages are retrieved.

If we have an index on sid:
Would have to retrieve all tuples/pages. With a clustered index, the cost is 50+500, with

unclustered index, 50+40000.

Doing a file scan:

We retrieve all file pages (500).

VIRGINIA
TECH.

Enumeration of Left-Deep Plans

//Efk\ //jii\
+ Left-deep plans differ in /’4\ D /’4\ C
— the order of relations 4 o 4 D
— the access method for each leaf operator /\
— the join method for each join operator A B B A

 Enumerated using N passes (if N relations joined):

- Pass 1: Find best 1-relation plan for each relation

- Pass i: Find best way to join result of an (i -1)-relation plan (as outer) to
the i’ th relation. (i between 2 and N.)

* For each subset of relations, retain only:
- Cheapest plan overall, plus
- Cheapest plan for each interesting order of the tuples.

VIRGINIA
TECH.

The Principle of Optimality

Bellman '57 (slightly adapted to our setting)
The best overall plan is composed of best decisions on the subplans

For example, the best left-deep plan to join tables A, B, C is either:

Optimal result has optimal substructure

(The best plan for joining A, B) <1 C
(The best plan for joining A, C) <t B
(The best plan for joining B, C) bx A

This is great!

When optimizing a subplan (e.g. A > B), we don’t have to think about how it will be used later
(e.g. when dealing with C)!

When optimizing a higher-level plan (e.g. A< B <1 C) we can reuse the best results of
subroutines (e.g. A > B)!

VIRGINIA
TECH.

Dynamic Programming Algorithm for System R

* Principle of optimality allows us to build best subplans

“bottom up”

— Pass 1: Find best plans of height 1 (base table accesses), and record them in
a table

— Pass 2: Find best plans of height 2 (joins of base tables) by combining plans
of height 1, record them in a table

— Pass i: Find best plans of height i by combining plans of height i - 1 with
plans of height 1, record them in a table

— Pass n: Find best plan overall by combining plans of height n-71 with plans of
height 1.

VIRGINIA
TECH.

The Basic Dynamic Programming Table

Table keyed on 1st column

{R, S}

hashjoin(R,S)

Subset of tables in FROM clause | =1:558¢E1 Cost

1000

{R, T}

mergejoin(R,T)

700

VIRGINIA
TECH.

A Note on “Interesting Orders”

* Physical property: Order.
When should we care? When is it “interesting”?

« An intermediate result has an “interesting order” if it
IS sorted by anything we can use later in the query
("downstream” the arrows (operator)):

— ORDER BY attributes
— GROUP BY attributes

— Join attributes of yet-to-be-added joins
» subsequent merge join might be good

VIRGINIA
TECH.

The Dynamic Programming Table

Table keyed on concatenation of 1st two columns

Subset of Interesting- [=580 EL Cost
tables in FROM | order

clause columns

{R, S} <none> hashjoin(R,S) 1000
{R, S} <R.a, S.b> sortmerge(R,S) | 1500

<Higher cost, but
may lead to global

optimal plan!

VIRGINIA
TECH.

Enumeration of Plans (Contd.)

« First figure out the scans and joins (select-project-join) using dynamic programming

— Avoid Cartesian Products in dynamic programming as follows:
When matching an i -1 way subplan with another table, only consider it if

« There is a join condition between them, or
» All predicates in WHERE have been “used up” in the i -1 way subplan.

« Then handle ORDER BY, GROUP BY, aggregates etc. as a post-processing step
— Via “interestingly ordered” plan if chosen (free!)
— Or via an additional sort/hash operator

« Despite pruning, this System R dynamic programming algorithm is exponential in
#tables.

VIRGINIA
TECH.

Example Sailors:

Hash, B+ tree indexes on sid
SELECT S.sid, COUNT(x) AS number Reserves: _
FROM Sailors S, Reserves R, Boats B Clustered B+ tree on bid
WHERE S.sid = R.sid B+ on sid
AND R.bid = B.bid Boats
AND B.color = “red” B+ on color

GROUP BY S.sid

Pass 1: Best plan(s) for each relation
— Sailors, Reserves: File Scan
— Also B+ tree on Reserves.bid as interesting order
— Also B+ tree on Sailors.sid as interesting order
— Boats: B+ tree on color

VIRGINIA
TECH.

Best plans after pass 1

Subset of tables in Interesting-order Best plan
FROM clause columns

{Sailors} -- filescan
{Reserves} -- Filescan
{Boats} -- B-tree on color
{Reserves} (bid) B-tree on bid
{Sailors} (sid) B-tree on sid

VIRGINIA
TECH.

Pass 2

/[for each left-deep logical plan

for each plan P in pass 1
for each FROM table T not in P
// for each physical plan
for each access method Mon T
for each join method
generate P > M(T)

— File Scan Reserves (outer) with Boats (inner)

— File Scan Reserves (outer) with Sailors (inner)

— Reserves Btree on bid (outer) with Boats (inner)
— Reserves Btree on bid (outer) with Sailors (inner)
— File Scan Sailors (outer) with Boats (inner)

— File Scan Sailors (outer) with Reserves (inner)

— Boats Btree on color with Sailors (inner)

— Boats Btree on color with Reserves (inner)

» Retain cheapest plan for each (pair of relations, order)

VIRGINIA
TECH.

Best plans after pass 2

Subset of tables in Interesting-order Best plan

FROM clause columns

{Sailors} -- filescan

{Reserves} -- Filescan

{Boats} -- B-tree on color

{Reserves} (bid) B-tree on bid

{Sailors} (sid) B-tree on sid

{Boats, Reserves} (B.bid) SortMerge(B-tree on
(R.bid) Boats.color, filescan

Reserves)
Etc...

VIRGINIA
TECH.

Pass 3 and beyond

« Using Pass 2 plans as outer relations, generate plans for
the next join in the same way as Pass 2

— E.g. {SortMerge(B-tree on Boats.color, filescan Reserves)} (outer) |
with Sailors (B-tree sid) (inner)

« Then, add cost for groupby/aggregate:

— This is the cost to sort the result by sid, unless it has already
been sorted by a previous operator.

* Then, choose the cheapest plan

VIRGINIA
TECH.

Now you understand the optimizer!

 Benefit #1: You could build one.

 Benefit #2: You can influence one

— People who write non-trivial SQL often get frustrated with the optimizer
* |t picked a crummy plan!
|t didn’t use the index | built!
« Etc.
— Understanding the optimizer can lead you to:
» Design your DB & Indexes better
* Avoid “weak spots” in your optimizer’s implementation
» Coax your optimizer to do what you want

VIRGINIA
TECH.

Summary

Optimization is the reason for the lasting power of the
relational system

But it is primitive in some SQL databases, and in the Big Data
stack

Many new areas:

— Smarter statistics (fancy histograms, “sketches™)
— Auto-tuning statistics

— Adaptive runtime re-optimization

— Multi-query optimization

— Parallel scheduling issues

VIRGINIA
TECH.

Reading and Next Class

* Query Optimization: Ch 15
* Next: Security & SQL injection: Ch 21

VIRGINIA
TECH.

