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Today’s Topics

* Query Optimization
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Query Parsing & Optlmlzatlon
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Query Parsing & Optimization

« Query parser
« Check correctness,
authorization
« (Generates a parse tree
« Straightforward

* Query rewriter
« Converts queries to
canonical form
« flatten views
« subqueries into fewer

query blocks
» Weak spot in many open-source
DBMSs
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Query Parsing & Optimization

« “Cost-based” Query Optimizer
« Optimizes 1 query block at a
time
« Select, Project, Join
« GroupBy/Agg
* Order By (if top-most
block)
» Uses catalog stats to find least-
“cost” plan per query block
« “Soft underbelly” of every
DBMS
« Sometimes not truly

“‘optimal”
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Query Optimization Overview

* Query block can be converted to relational algebra
« Relational algebra converts to tree

« Each operator has implementation choices

* Operators can also be applied in different orders!

SELECT S.sname

FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100

AND S.rating>5

\

7t(sname)G(bid=1OO A rating > 5)
(Reserves > Sailors)

Obid=100

Dqsid:sid

PAGE NESTED LOOPS

Reserves
SCAN
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Query Optimization: The Components

» Three beautifully orthogonal concerns:

— Plan space:
 for a given query, what plans are considered?

— Cost estimation:
* how is the cost of a plan estimated?

— Search strategy:
* how do we “search” in the “plan space”?
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Query Optimization: The Goal

* Optimization goal:
— ldeally: Find the plan with least actual cost.

— Reality: Find the plan with least estimated cost.
* And try to avoid really bad actual plans!
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Query Optimization: Example Hash join;

», merge join;

n n // nested loops;
I : | K
o Canonical form >
> \ Index; seq scan
o :
/N |
STUDENT TAKES STUDENT TAKES

Canonical Form has the following properties:

1. Push Selections as much as possible.

2. Push Projections as much as possible

3. ltis aleft-deep join tree (we will see this later)




Relational Algebra Equivalences

e Selections:

— Gcin..aen(R) = 0¢q(...(0cn(R))...) (cascading)
— 041(0c2(R)) = 0c2(064(R)) (commutative)

* Projections:
- Tca1(R) = na1(---(na1, an-1(R))---) (cascading)
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Relational Algebra Equivalences

e Cartesian Product
— Rx(SxT)=(RxS)xT (associative)

-~ RxS=S xR (commutative)

« Join
-~ RPA(SPAT)=(RPAS) BT (associative)
-~ RDPDIS=S PAR (commutative)
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Are Joins Associative and Commutative?

« After all, just Cartesian Products with Selections
* You can think of them as associative and commutative...
» ...But beware of join turning into cross-product!

— Consider R(a,z), S(a,b), T(b.Y) [cprmer »
FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b;

— (S ™po, T) M-, R E S ., (T ™., R) (not legalll)
— (S ™, T) ¥, RZES ™, (T x R) (not the same!!)
— (S, T)X,_. R=S X, , .-, (T x R) (the same!!)
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Join Ordering

« Similarly, note that some join orders
have cross products, some don’t

« Equivalent for the query above:

SELECT *
() () FROM R, S, T
(o) (D RO () WHERE R.a = S.a
(R[XlazaS)[lesz R[Xla:a(SNb:bT)
GO (b (x )
3 D D D
R > a=a (T ™ b=b S) (RxT)xa=anb=bS
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(Some) Transformation Rules (1)

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

Oy, (E) =0, (0, (E))
2. Selection operations are commutative.

o, (0, (L) =0, (0o, (L))

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

I1, (I, (...(T,, (E))..)) =11, (E)

4. Selections can be combined with Cartesian products and
theta joins.
co(E1 X Ep) = E4 X g Ey
o1(E1X 62 E) = B4 M g1, 62 Es
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(Some) Transformation Rules (2)

9. Theta-join operations (and natural joins) are commutative.
EXgy E, = E, Ne E,

6. (a) Natural join operations are associative:
(E4 WE,) XE; = E; X(E; X Ey)

(b) Theta joins are associative in the following manner:

(E1 X g1 E2) W 920 03 E3 = E1 X g1 93 (E2 X g2 E3)

where 6, involves attributes from only E, and E,.
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(Some) Transformation Rules (3)

7. The selection operation distributes over the theta join operation
under the following two conditions:
(@) When all the attributes in 6, involve only the attributes of one
of the expressions (E4) being joined.

Seo(E4 X g Ez) = (ogo(E4))X g E,

(b) When 6 , involves only the attributes of E, and 6, involves
only the attributes of E,.

Go1/gr (E1X g E) = (og4(E4)) X5 (04, (E))
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Some Common Heuristics: Selections

» Selection cascade and pushdown

— Apply selections as soon as you have the relevant
columns
— EX:

* Tsname (G(bid:100 A rating > 5) (RGSGI’VGS > sid=sid Sailors))
* Tsname (Gbid:100 (RGSGFVGS) > sid=sid O rating > 5 (Sailors))
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Some Common Heuristics: Projections

* Projection cascade and pushdown

— Keep only the columns you need to evaluate
downstream operators
— EX:
* TlsnameO (bid=100 A rating > 5) (RE€SErVes X gig_sig Sailors)
* Tlgname (Tsid(Obid=100 (R€SErVES)) Dsig=sid Tsname sid (O rating > 5 (Sailors)))

VIRGINIA
TECH.



Some Common Heuristics

» Avoid Cartesian products

— Given a choice, do theta-joins rather than cross-
products

— Consider R(a,b), S(b,c), T(c,d)
— Favor(R< S)x Tover(RxT) xS
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Query Parsing & Optlmlzatlon
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: . From Blah B _} e ——
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Schema for Examples

Sailors (sid: integer, sname: text, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: date, rname: text)

 Reserves:
— Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
— Assume there are 100 boats

« Sailors:
— Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
— Assume there are 10 different ratings

« Assume we have 5 pages to use for joins.
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Motivating Example: Plan 1

Here’s a reasonable query plan:

On-the-fly
On-the-fly
On the-fly

snd sid
PAGE NESTED LOOPS

SELECT S.sname

FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100

AND S.rating>5
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Motivating Example: Plan 1 Cost

On-the-fly
On-the-fly

On the-fly

s id=sid
PAGE NESTED LOOPS

Let’s estimate the cost:
Scan Sailors (500 IOs)
For each page of Sailors,
Scan Reserves (1000 10s)

Total: 500 + 500*1000
— 500,500 I10s

Bad plan!

Goal of optimization:

— Find less cost (faster) plan that
compute the same answer
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Plan 2: Selection Pushdown

Obid=100

D qsid:sid
PAGE NESTED LOOPS

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

500,500 IOs

Ohid=100
Dqsid=sid

PAGE NESTED
LOOP

Grating >5
A

Sailors
SCAN

Reserves
SCAN
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Plan 2 Cost Analysis

e Let's estimate the cost:
« Scan Sailors (500 10s)

* For each pageful of high-rated Sailors,
Scan Reserves (1000 10s)

 Total: 500 + 250*1000 = 250,500 IOs
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Plan 3: More Selection Pushdown

Tcsname
A

Nsid=sid

PAGE NESTED
LOOPS
Obid=100
A
Reserves
SCAN

Dqsid=sid

PAGE NESTED

250,500 IOs
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Plan 3 Cost Analysis

 Let's estimate the cost:
e Scan Sailors (500 10s)

* For each pageful of high-rated
Sailors,

Scan Reserves (1000 10s) ~
‘

« Total: 500 + 250*1000 = 250,500 10s
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More Selection Pushdown Analysis

Pushing a selection into the inner
loop of a nested loop join doesn’t
save I/Os! Essentially equivalent

to having the selection above.
Tlsname
A

[><] sid=sid

PAGE NESTED
LOOPS

Ohid=100

D<]sid=sid

PAGE NESTED
LOOP

Ohid=100

Reserves
SCAN

250,500 IOs

Grating >5
A

Sailors Reserves
SCAN SCAN

250,500 IOs
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Plan 4: Join Ordering

[><]sid=sid

PAGE NESTED
LOOP

csrating >5
A

Sailors Reserves
SCAN SCAN

250,500 IOs

Nsid=sid

PAGE NESTED
LOOPS

cTrating >5

Reserves Sailors
SCAN SCAN
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Plan 4 Cost Analysis

e |Let's estimate the cost:
Scan Reserves (1000 IOs)

For each pageful of Reserves
for bid 100,
Scan Sailors (500 IOs)

Total: 1000 +10*500 = 6000 10s
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Plan 5: Materializing Inner Loops

M sid=sid
PAGE NESTED
Q0P

Obid=100
A
Reserves Sailors
SCAN SCAN

Grating >5

6000 IOs

Ohid=100

A
Reserves
SCAN

Dqsid=sid

PAGE NESTED

QOP.

cyrating >5
7'}

Sailors
SCAN
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Plan 5 Cost Analysis

« Let's estimate the cost:

« Scan Reserves (1000 IOs)

e Scan Sailors (500 10s)

» Materialize Temp table T1 (250 10s)

* For each pageful of Reserves for bid
100,
Scan T1 (250 10s)

« Total: 1000 + 500+ 250 + (10 * 250)
= 4250 IOs
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Plan 6: Join Ordering Again

Plsig=sid
PAGE NESTED
LOOPS

Obid=100
A

Reserves
SCAN

cYrating >5
A

Sailors
SCAN

4250 IOs

Plsig=sid
PAGE NESTED
LOOPS

Orating > 5 mat

A A

Sailors
<:::::;;;;:::::> Gbid=100
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Plan 6 Cost Analysis

« Let's estimate the cost:

e Scan Sailors (500 10s)

« Scan Reserves (1000 IOs)

« Materialize Temp table T1 (10 10s)
* For each pageful of high-rated

Sai |OI'S, Gbig=100

Scan T1 (10 10s)

 Total: 500 + 1000 +10 +(250 *10)
= 4010 IOs
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Plan 7: Join Algorithm

SORT MERGE JOIN

ESTED LOOPS

PAGE N

CHD RN
o
fbd T
SCAN

4010 IOs

at
A
id=
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Plan 7 Cost Analysis

« With 5 buffers, cost of plan:
« Scan Reserves (1000)
« Scan Sailors (500)

« Sort high-rated sailors

Note: pass 0 doesn’t do read I/O, just gets input from select.

SORT MERGE JOIN

Ohid=100

e Sort reservations for boat 100 I

Note: pass 0 doesn’t do read I/O, just gets input from select. @
* Merge (10+250) = 260
« Total: sum above
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Plan 7 Cost Analysis

« With 5 buffers, cost of plan:
* Scan Reserves (1000)
« Scan Sailors (500)

e Sort reservations for boat 100

SORT MERGE JOIN

— 2 passes for reserves ,
pass 0 = 10 to write, pass 1 = 2*10 to read/write

A

« Sort high-rated sailors I

— 4 passes for sailors SCAN

pass 0 = 250 to write, pass 1,2,3 = 2*250 to read/write

Merge (10+250) = 260

1000 + 500 + sort reserves(10 + 2*10* 1) + sort sailors
(250 + 2*250%3) + merge (10+250) = 3540 10s

VIRGINIA
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Join Algorithm and Materializing Inner Loops

SORT MERGE JOIN

rating > 'y
SCAN
Reserves
3540 10s Czr >
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Plan 8 Cost Analysis

« With 5 buffers, cost of plan:
« Scan Sailors (500), write T1 (250)

. Scan Reserves (1000), write T2 (10)
« SortT1
mat_ D _mat_

e SortT2

 How many passes for each sort?
— 2 passes for reserves (21072 to read/write)

— 4 passes for sailors (2*250*4 to read/write) @ Gbid;@
. Merge (10+250) = 260 f

+ Total: & R
1000 + 500 + 10 + 250 + 2*10*2 +
2:250*4 + merge (10+250) = 4060 10s
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Another Join Algorithm

Dqsid=sid

PAGE NESTED LOOPS BLOCK NESTED LOOP

y A

Sailors Sailors
SCAN Obid=100 SCAN Ohid=100

4010 IOs
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Plan 9 Cost Analysis

With 5 buffers, cost of plan:

Scan Sailors (500)
Scan Reserves (1000)

Write Temp T1 (10)

For each blockful of high-rated sailors
Loopon T1 (] [Sp)/(B-2) 1 *[T])

Total:

500 + 1000 +10 +(ceil(250/3) *10) = 500 +
1000 +10 +(84 *10) = 2350 10s

A

Sailors
SCAN

Dxﬂsw=sm

BLOCK NESTED LOOP

Ohid=100
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How About Indexes?

 |Indexes:
— Reserves.bid clustered
— Sailors.sid unclustered

* Assume indexes fit in memory

Reserves: bid Sailors

bid = 100 (on 10 pages)
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Index Cost Analysis

No projection pushdown to left for Tlg,3me

— Projecting out unnecessary fields from

outer of Index NL doesn’t make an 1/O difference. ©
Grating> 5

No selection pushdown to right for G 4ting > 5
— Does not affect Sailors.sid index lookup

With clustered index on bid of Reserves, we access

how many pages of Reserves?:
— 100,000/100 = 1000 tuples on 1000/100 = 10

Reserves
INDEX SCAN
pages.

Join column sid is a key for Sailors. 1010 IOs
— At most one matching tuple, unclustered index on sid OK

D<lsid=sid

INDEX NEST LOOP

Sailors
INDEX SCAN
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Index Cost Analysis Part 2

With clustered index on bid of Reserves, we access how many

pages of Reserves?:

— 100,000/100 (boats) = 1000 tuples on 1000/100 = 10
pages.

for each Reserves tuple 1000
get matching Sailors tuple (1 10)

(recall: 100 Reserves per page, 1000 pages)
10 + 1000*1 = 1010 IOs

Cost: Selection of Reserves tuples (10 1/Os); then, for
each, must get matching Sailors tuple (1000); total 1010
l/Os.

A

D<]sid=sid

INDEX NEST LOOP

I Sailors

bid=100 INDEX SCAN
Reserves
INDEX SCAN

1010 IOs
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Summing up

* There are lots of plans
— Even for a relatively simple query

* Not so clear that's true!
— Manual query planning can be tedious, technical

— Machines are better at enumerating options than people
* Hence Al

—  We will see soon how optimizers make simplifying assumptions
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Query Optimization

Given: A closed set of operators
» Relational ops (table in, table out)
* Physical implementations (of those ops and a few more)

Plan space
« Based on relational equivalences, different implementations
Cost Estimation based on
» Cost formulas
« Size estimation, in turn based on
« (Catalog information on base tables
« Selectivity (Reduction Factor) estimation
A search algorithm
» To sift through the plan space and find lowest cost option!




A Naive Query Optimizer

« Given an input query Q:
1. Enumerate all possible plans for Q
* Too many plans to consider!

2. Estimate the cost of each plan
« Hard to estimate cost accurately given caches etc.
3. Pick plan with the lowest cost

« How? Keep all plans in memory?
« What if there are million alternative ways of executing the Q?

VIRGINIA
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The System R Optimizer

* Plan Space
— Many plans have the same high cost subtree that can be pruned

— Heuristics(aka tricks that usually work):

« Consider only left-deep plans
* Avoid Cartesian products
* Don’t optimize the entire query at once

 (Cost estimation

— Inexact is fine as long as we can compare plans
» Better estimators have been developed

« Search Algorithm

— Dynamic Programming

VIRGINIA
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Query Optimization

1. Plan Space
2. Cost Estimation

3. Search Algorithm

VIRGINIA
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e GROUP BY S2.rating)

Query Blocks: Units of Optimization

* Break query into query blocks
* Optimize one block at a time
* Uncorrelated nested blocks computed once

 Correlated nested blocks are like function calls
— But sometimes can be “decorrelated”
— Recall relational algebra lecture

SELECT S.sname
FROM Sailors S
WHERE S.age IN

Outer block

(SELECT MAX (SZ2.age)
FROM Sailors S2

Nested block

VIRGINIA
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Query Blocks: Units of Optimization

* For each block, the plans considered are:

— All relevant access methods, for each relation in
FROM clause
— All left-deep join trees
* right branch always a base table
« consider all join orders and join methods

>
SELECT S.§name Outer block
FROM Sailors S
WHERE S.age IN /><|\ D
(SELECT MAX (S2.age) | wested block N c
FROM Sailors S2 ////\\\
I GROUP BY S2.rating) A B
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Schema for Examples

Sailors (sid: integer, sname: text, rating: integer,
age: float)
Reserves (sid: integer, bid: integer, day: date,
rname: text)
 Reserves:
— Each tuple is 40 bytes long,
— 100 tuples per page, 1000 pages.
— 100 distinct bids.

« Sailors:
— Each tuple is 50 bytes long,
— 80 tuples per page, 500 pages.
— 10 ratings, 40,000 sids.
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“Physical” Properties

Two common “physical” properties of an output:

— Sort order

— Hash Grouping

Certain operators produce these properties in output

— E.g., Index scan (result is sorted)

— E.g., Sort (result is sorted)

— E.g., Hash (result is grouped)

Certain operators require these properties at input

— E.g., MergedJoin requires sorted input

Certain operators preserve these properties from inputs

— E.g., MergedJoin preserves sort order of inputs
— E.g., Index nested loop join (INLJ) preserves sort order of outer (left)

input

VIRGINIA
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Physically Equivalent Plans

« Same content and same physical properties

t 1sid=sid
GRACE HASH JOIN

Reserves
SCAN

[: 1sid=sid
SORT MERGE JOIN

Reserves
SCAN
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Queries Over Multiple Relations

« A System R heuristic: only left-deep join trees
considered

— Restricts the search space

— Left-deep trees allow us to generate all fully pipelined plans
* i.e., intermediate results not written to temporary files
* Not all left-deep trees are fully pipelined (e.g., SM join).

A B

VIRGINIA
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Plan Space Review
* Fora SQL query, full plan space:

— All equivalent relational algebra expressions
» Based on the equivalence rules we learned
— All mixes of physical implementations of those algebra
expressions
* We might prune this space:
— Selection/Projection pushdown
— Left-deep trees only
— Avoid Cartesian products
» Along the way we may care about physical properties
like sorting
— Because downstream ops may depend on them
— And enforcing them later may be expensive
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Query Optimization

1. Plan Space
2. Cost Estimation

3. Search Algorithm
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Cost Estimation

 For each plan considered, must estimate total cost:

— Must estimate cost of each operation in plan tree
» Depends on input cardinalities.
* sequential scan, index scan, joins, etc.

» Must estimate size of result for each operation in tree!
— Because it determines downstream input cardinalities!
— Use information about the input relations.
— For selections and joins, assume independence of predicates.
* In System R, cost is boiled down to a single number
consisting of #//O + CPU-factor * #tuples

— Second term estimate the cost of tuple processing
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Statistics and Catalogs

. Need info on relations and indexes involved.
« Catalogs typically contain at least:

statistic | Meaning

NTuples # of tuples in a table (cardinality)
NPages # of disk pages in a table
Low/High min/max value in a column
Nkeys # of distinct values in a column
IHeight the height of an index

INPages # of disk pages in an index

«  Catalogs updated periodically.
— Too expensive to do continuously
— Lots of approximation anyway, so a little slop here is ok.
. Modern systems do more
—  Especially keep more detailed statistical information on data values. e.g., histograms
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m min  Filev ctv Toolsv Helpv
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> Ecslabs
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v £ Databases (3) Sequential tuples read 302497
v Seslabs Index scans 6551
> [ Casts
> g Extensions Tuples inserted 2819
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>[I} FTS Dictionaries
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> AaFTS Parsers Distinct values 15
Heap blocks hit 22576
> [CIFTS Templates P Most common values {2,0,1,3,4,5,6,10,7,8,9}
> [F] Foreign Tables Index blocks read 14
> {3 Functions ) Most common frequencies 0.139056,0.122384,0.12061,0.11458,0.0865555,
Index blocks hit 18446
> 1.3Sequences i
« EiTables (21) Toast blocks read 0 Histogram bounds {11,12,12,50}
> [agents Toast blocks hit 0 Correlation 0.114016
> FHbasic_cards R
. Toast index blocks read 0
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> [ big_cards Toast index blocks hit 0
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> Fcards
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> 5 customer
> 5 dust_costs Last analyze
> Edentourages Last autoanalyze 2021-01-17 21:36:05.210055+00
> 9 mechanics
> EHorders Vacuum counter 0
> 5 people Autovacuum counter 0
> Epersons Analyze counter 0
> [ play_requirements
> 9 product Autoanalyze counter 1
> Hreserves Table size 488 kB
> Bsailors Toast table size 8192 bytes
> [ supplier Y VI RG I N IA
> 5 supplies Indexes size 112 kB
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Size Estimation and Selectivity

« Max output cardinality = product of input the cardinalities

of the relations in FROM

« Selectivity (sel) associated with each term in WHERE

— Reflects the impact of the term in reducing result size.

— Selectivity = |output| / |input|

— Selectivity: “Reduction Factor” (RF)

— Always between 0 and 1

SELECT attribute list
FROM relation list
WHERE terml AND ...

AND termk
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Result Size Estimation

« Result cardinality = Max # tuples * product of all
selectivities.

« Term col=value (given Nkeys(col) unique values of col)
— sel = 1/NKeys(col)
« Term col1=col2 (handy for joins too...)
— sel = 1/MAX(NKeys(col1), NKeys(col2))
* Term col>value
— sel = (High(col)-value)/(High(col)-Low(col) )
« Termin
— sel = 1/NKeys(col) * # items in the list
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/%

*x Note: the default selectivity estimates are not chosen entirely at random.
* We want them to be small enough to ensure that indexscans will be used if
* available, for typical table densities of ~100 tuples/page. Thus, for

* example, 0.01 is not quite small enough, since that makes it appear that
* nearly all pages will be hit anyway. Also, since we sometimes estimate

*x eqsel as 1/num_distinct, we probably want DEFAULT_NUM_DISTINCT to equal

* 1/DEFAULT_EQ_SEL.

*/

/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.005

/* default selectivity estimate for inequalities such as "A < b" x/
#define DEFAULT_INEQ_SEL ©.3333333333333333

/* default selectivity estimate for range inequalities "A > b AND A < c" %/
#define DEFAULT_RANGE_INEQ_SEL 0.005

/* default selectivity estimate for multirange inequalities "A > b AND A < c" %/
#define DEFAULT_MULTIRANGE_INEQ_SEL 0.005

/* default selectivity estimate for pattern-match operators such as LIKE x/
#define DEFAULT_MATCH_SEL  0.005

/* default selectivity estimate for other matching operators x*/
#define DEFAULT_MATCHING_SEL 0.010

/* default number of distinct values in a table */
#define DEFAULT_NUM_DISTINCT 200

/* default selectivity estimate for boolean and null test nodes x/
#define DEFAULT_UNK_SEL 0.005
#define DEFAULT_NOT_UNK_SEL (1.0 — DEFAULT_UNK_SEL)

postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres
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Reduction Factors & Histograms

Distribution D
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Reduction Factors & Histograms
Equiwidth histogram

10

9

8

LR LNl

0
01 2 4 5 6 78 10111213 14

Equidepth histogram ~ quantiles
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Selectivity Example: Join Selectivity

R b, 74(S)

algebraic equivalence: R M, S = g,(R x )
Join selectivity is selectivity s, === Total rows: s, x |R| x ||

R b, 04(S) = 0(R x 04(S)) = 7R x )

p/\q

Join selectivity is selectivity s,s, === Total rows: s;s, x |R| x S
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Selectivity Example: Column Equality

T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

allllly I

40 60 80 100 120 140 5 15 25 35 45 55

p = # potatoes consumed per yr age

VIRGINIA
TECH.



Selectivity Example: Column Equality

T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

T.p = T.age

=(T.p=40AT.age=40)v(T.p=41AT.age=41) v (T.p =42 A T.age = 42) ...
=(T.p =40 AT.age =40) + (T.p =41 A T.age = 41) + (T.p =42 A T.age = 42) ...
=(T.p=40*T.age =40) + (T.p =41 *T.age =41) + (T.p =42 * T.age = 42) ...

Independence assumption

(T.p = 40) (T.age = 40)
_height(bin,(40)) _height(bin,,(40)) Unif ti
= Width®in@0) " n ~ wWidthbin (40)* n o cssumpren

Just add up all the values...
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Compute Selectivities

Know how to compute selectivities for basic predicates
— The System R version
— The histogram version
Assumption 1: uniform distribution within histogram bins
— Within a bin, fraction of range = fraction of count
Assumption 2: independent predicates
— Selectivity of AND = product of selectivities of predicates

— Selectivity of OR = sum of selectivities of predicates - product of
selectivities of predicates

— Selectivity of NOT = 1 — selectivity of predicates
Joins are not a special case

— Simply compute the selectivity of all predicates

— And multiply by the product of the table sizes
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Summary: Selectivity Estimation

 We need a way to estimate the size of the intermediate tables
Recall cost of each operator =

I/Os (to bring in input) + CPU-factor * # tuples processed

Output size = input size * operator selectivity

System R

col=value
* 1/unig-keys(col)

coll=col2
« 1/MAX(unig-keys(col1),
unig-keys(col2))

col>value
High(col) - value
High(col) - Low(col) + 1

Histogram

* col=value
bar height containing value

# values contained in bar

 coll=col2

* Breakdown into
(colt =vi Acol2=v1)V
(colt =v2Acol2=Vv2)V ...

e col>value
sum of bar heights >value
total number of rows
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Summary: Selectivity Estimation

* |n both cases, for more complex predicates:
— p1Ap2
 selectivity(p1) * selectivity(p2)
— plvp2
 selectivity(p1) + selectivity(p2) — (selectivity(p1) *
selectivity(p2))
« Lasttermis O if p1 and p2 are non-overlapping (e.g.,
age>60 OR age<21)

— Not p1 =1 — selectivity(p1)
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Query Optimization

1. Plan Space
2. Cost Estimation

3. Search Algorithm

VIRGINIA
TECH.



Enumeration of Alternative Plans

* There are two main cases:
— Single-table plans (base case)
— Multiple-table plans (induction)

« Single-table queries include selects, projects, and
GroupBy/aggregation:
— Consider each available access path (file scan / index)
« Choose the one with the least estimated cost
— Selection/Projection done on the fly

— Result pipelined into grouping/aggregation
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Cost Estimates for Single-Relation Plans

* Index | on primary key matches selection:
— Costis (Height(l) + 1) + 1 for a B+ tree.

« Clustered index | matching selection:
— (NPages(l)*NPages(R)) * selectivity.

* Non-clustered index | matching selection:
— (NPages(l)*NTuples(R)) * selectivity.

« Sequential scan of file:
— NPages(R).

« Recall: Must also charge for duplicate elimination if required
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Example

SELECT S.sid

FROM Sailors S
WHERE S.rating=8

If we have an index on rating:
Cardinality = (1/NKeys(l)) * NTuples(R) = (1/10) * 40000 tuples

Clustered index: (1/NKeys(l)) * (NPages(l)+NPages(R))

= (1/10) * (50+500) = 55 pages are retrieved. (This is the cost.)

Unclustered index: (1/NKeys(l)) * (NPages(l)+NTuples(R))
= (1/10) * (50+40000) = 4005 pages are retrieved.

If we have an index on sid:
Would have to retrieve all tuples/pages. With a clustered index, the cost is 50+500, with

unclustered index, 50+40000.

Doing a file scan:

We retrieve all file pages (500).
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Enumeration of Left-Deep Plans

//Efk\ //jii\
+ Left-deep plans differ in /’4\ D /’4\ C
— the order of relations 4 o 4 D
— the access method for each leaf operator /\
— the join method for each join operator A B B A

 Enumerated using N passes (if N relations joined):

- Pass 1: Find best 1-relation plan for each relation

- Pass i: Find best way to join result of an (i -1)-relation plan (as outer) to
the i’ th relation. (i between 2 and N.)

* For each subset of relations, retain only:
- Cheapest plan overall, plus
- Cheapest plan for each interesting order of the tuples.
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The Principle of Optimality

Bellman '57 (slightly adapted to our setting)
The best overall plan is composed of best decisions on the subplans

For example, the best left-deep plan to join tables A, B, C is either:

Optimal result has optimal substructure

(The best plan for joining A, B) <1 C
(The best plan for joining A, C) <t B
(The best plan for joining B, C) bx A

This is great!

When optimizing a subplan (e.g. A > B), we don’t have to think about how it will be used later
(e.g. when dealing with C)!

When optimizing a higher-level plan (e.g. A< B <1 C) we can reuse the best results of
subroutines (e.g. A > B)!
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Dynamic Programming Algorithm for System R

* Principle of optimality allows us to build best subplans

“bottom up”

— Pass 1: Find best plans of height 1 (base table accesses), and record them in
a table

— Pass 2: Find best plans of height 2 (joins of base tables) by combining plans
of height 1, record them in a table

— Pass i: Find best plans of height i by combining plans of height i - 1 with
plans of height 1, record them in a table

— Pass n: Find best plan overall by combining plans of height n-71 with plans of
height 1.
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The Basic Dynamic Programming Table

Table keyed on 1st column

{R, S}

hashjoin(R,S)

Subset of tables in FROM clause | =1:558¢E1 Cost

1000

{R, T}

mergejoin(R,T)

700
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A Note on “Interesting Orders”

* Physical property: Order.
When should we care? When is it “interesting”?

« An intermediate result has an “interesting order” if it
IS sorted by anything we can use later in the query
("downstream” the arrows (operator) ):

— ORDER BY attributes
— GROUP BY attributes

— Join attributes of yet-to-be-added joins
» subsequent merge join might be good
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The Dynamic Programming Table

Table keyed on concatenation of 1st two columns

Subset of Interesting- [ =580 EL Cost
tables in FROM | order

clause columns

{R, S} <none> hashjoin(R,S) 1000
{R, S} <R.a, S.b> sortmerge(R,S) | 1500

<Higher cost, but
may lead to global

optimal plan!
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Enumeration of Plans (Contd.)

« First figure out the scans and joins (select-project-join) using dynamic programming

— Avoid Cartesian Products in dynamic programming as follows:
When matching an i -1 way subplan with another table, only consider it if

« There is a join condition between them, or
» All predicates in WHERE have been “used up” in the i -1 way subplan.

« Then handle ORDER BY, GROUP BY, aggregates etc. as a post-processing step
— Via “interestingly ordered” plan if chosen (free!)
— Or via an additional sort/hash operator

« Despite pruning, this System R dynamic programming algorithm is exponential in
#tables.
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Example Sailors:

Hash, B+ tree indexes on sid
SELECT S.sid, COUNT(x) AS number Reserves: _
FROM Sailors S, Reserves R, Boats B Clustered B+ tree on bid
WHERE S.sid = R.sid B+ on sid
AND R.bid = B.bid Boats
AND B.color = “red” B+ on color

GROUP BY S.sid

Pass 1: Best plan(s) for each relation
— Sailors, Reserves: File Scan
— Also B+ tree on Reserves.bid as interesting order
— Also B+ tree on Sailors.sid as interesting order
— Boats: B+ tree on color
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Best plans after pass 1

Subset of tables in Interesting-order Best plan
FROM clause columns

{Sailors} -- filescan
{Reserves} -- Filescan
{Boats} -- B-tree on color
{Reserves} (bid) B-tree on bid
{Sailors} (sid) B-tree on sid
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Pass 2

/[ for each left-deep logical plan

for each plan P in pass 1
for each FROM table T not in P
// for each physical plan
for each access method Mon T
for each join method
generate P > M(T)

— File Scan Reserves (outer) with Boats (inner)

— File Scan Reserves (outer) with Sailors (inner)

— Reserves Btree on bid (outer) with Boats (inner)
— Reserves Btree on bid (outer) with Sailors (inner)
— File Scan Sailors (outer) with Boats (inner)

— File Scan Sailors (outer) with Reserves (inner)

— Boats Btree on color with Sailors (inner)

— Boats Btree on color with Reserves (inner)

» Retain cheapest plan for each (pair of relations, order)
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Best plans after pass 2

Subset of tables in Interesting-order Best plan

FROM clause columns

{Sailors} -- filescan

{Reserves} -- Filescan

{Boats} -- B-tree on color

{Reserves} (bid) B-tree on bid

{Sailors} (sid) B-tree on sid

{Boats, Reserves} (B.bid) SortMerge(B-tree on
(R.bid) Boats.color, filescan

Reserves)
Etc...
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Pass 3 and beyond

« Using Pass 2 plans as outer relations, generate plans for
the next join in the same way as Pass 2

— E.g. {SortMerge(B-tree on Boats.color, filescan Reserves)} (outer) |
with Sailors (B-tree sid) (inner)

« Then, add cost for groupby/aggregate:

— This is the cost to sort the result by sid, unless it has already
been sorted by a previous operator.

* Then, choose the cheapest plan
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Now you understand the optimizer!

 Benefit #1: You could build one.

 Benefit #2: You can influence one

— People who write non-trivial SQL often get frustrated with the optimizer
* |t picked a crummy plan!
|t didn’t use the index | built!
« Etc.
— Understanding the optimizer can lead you to:
» Design your DB & Indexes better
* Avoid “weak spots” in your optimizer’s implementation
» Coax your optimizer to do what you want
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Summary

Optimization is the reason for the lasting power of the
relational system

But it is primitive in some SQL databases, and in the Big Data
stack

Many new areas:

— Smarter statistics (fancy histograms, “sketches™)
— Auto-tuning statistics

— Adaptive runtime re-optimization

— Multi-query optimization

— Parallel scheduling issues
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Reading and Next Class

* Query Optimization: Ch 15
* Next: Security & SQL injection: Ch 21
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