
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Query Optimization

Today’s Topics

• Query Optimization

Query Parsing & Optimization

Plan Cost
Estimator

Query Plan Executor

Query Rewriter

Catalog Manager

Select *
From Blah B
Where B.blah = blah

Query Optimizer

Plan
Generator

Schema
& Statistics

Query Parser

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Query Parsing & Optimization

Plan
Cost

Estimator

Query Plan Executor

Query Rewriter

Catalog Manager

Select *
From Blah B
Where B.blah = blah

Query Optimizer

Plan
Generator

Schema
&
Statistics

Query Parser
• Query parser

• Check correctness,
authorization

• Generates a parse tree
• Straightforward

• Query rewriter
• Converts queries to

canonical form
• flatten views
• subqueries into fewer

query blocks
• Weak spot in many open-source

DBMSs

Query Parsing & Optimization

Plan
Cost

Estimator

Query Plan Executor

Query Rewriter

Catalog Manager

Select *
From Blah B
Where B.blah = blah

Query Optimizer

Plan
Generator

Schema
&
Statistics

Query Parser
• “Cost-based” Query Optimizer

• Optimizes 1 query block at a
time

• Select, Project, Join
• GroupBy/Agg
• Order By (if top-most

block)
• Uses catalog stats to find least-

“cost” plan per query block
• “Soft underbelly” of every

DBMS
• Sometimes not truly

“optimal”

Query Optimization Overview
• Query block can be converted to relational algebra
• Relational algebra converts to tree
• Each operator has implementation choices
• Operators can also be applied in different orders!

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
AND R.bid=100
AND S.rating>5

p(sname)s(bid=100 Ù rating > 5)
(Reserves ⨝ Sailors)

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Query Optimization: The Components

• Three beautifully orthogonal concerns:
– Plan space:

• for a given query, what plans are considered?
– Cost estimation:

• how is the cost of a plan estimated?
– Search strategy:

• how do we “search” in the “plan space”?

Query Optimization: The Goal

• Optimization goal:
– Ideally: Find the plan with least actual cost.
– Reality: Find the plan with least estimated cost.

• And try to avoid really bad actual plans!

Query Optimization: Example

STUDENT TAKES

σ

π

STUDENT TAKES

σ

π
Canonical form

Canonical Form has the following properties:
1. Push Selections as much as possible.
2. Push Projections as much as possible
3. It is a left-deep join tree (we will see this later)

Index; seq scan

Hash join;
merge join;
nested loops;

Relational Algebra Equivalences

• Selections:
– sc1Ù…Ùcn(R) º sc1(…(scn(R))…) (cascading)
– sc1(sc2(R)) º sc2(sc1(R)) (commutative)

• Projections:
– pa1(R) º pa1(…(pa1, …, an-1(R))…) (cascading)

Relational Algebra Equivalences

• Cartesian Product
– R ´ (S ´ T) º (R ´ S) ´ T (associative)
– R ´ S º S ´ R (commutative)

• Join
– R (S T) º (R S) T (associative)
– R S º S R (commutative)

Are Joins Associative and Commutative?
• After all, just Cartesian Products with Selections
• You can think of them as associative and commutative…
• …But beware of join turning into cross-product!

– Consider R(a,z), S(a,b), T(b,y)

– (S ⋈b=b T) ⋈a=a R ≢ S ⋈b=b (T ⋈a=a R) (not legal!!)
– (S ⋈b=b T) ⋈a=a R ≢ S ⋈b=b (T ´ R) (not the same!!)
– (S ⋈b=b T) ⋈a=a R ≡ S ⋈b=b Ù a=a (T ´ R) (the same!!)

SELECT *
FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b;

Join Ordering
• Similarly, note that some join orders

have cross products, some don’t
• Equivalent for the query above: SELECT *

FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b;

⨝

S´

R T

⨝

T⨝

R S

⨝

R ⨝

TS

⨝

R ⨝

ST

(R ⋈ a=a S) ⋈ b=b T R ⋈ a=a (S ⋈ b=b T)

R ⋈ a=a (T ⋈ b=b S) (R ´ T) ⋈ a=a ∧ b=b S

(Some) Transformation Rules (1)

(Some) Transformation Rules (2)

(Some) Transformation Rules (3)

Some Common Heuristics: Selections

• Selection cascade and pushdown
– Apply selections as soon as you have the relevant

columns
– Ex:

• psname (s(bid=100 Ù rating > 5) (Reserves ⨝ sid=sid Sailors))
• psname (sbid=100 (Reserves) ⨝ sid=sid s rating > 5 (Sailors))

Some Common Heuristics: Projections

• Projection cascade and pushdown
– Keep only the columns you need to evaluate

downstream operators
– Ex:

• psnames(bid=100 Ù rating > 5) (Reserves ⨝ sid=sid Sailors)
• psname (psid(sbid=100 (Reserves)) ⨝sid=sid psname,sid (s rating > 5 (Sailors)))

Some Common Heuristics
• Avoid Cartesian products

– Given a choice, do theta-joins rather than cross-
products

– Consider R(a,b), S(b,c), T(c,d)
– Favor (R ⋈ S) ⋈ T over (R ´ T) ⋈ S

⨝

S´

R T

⨝

T⨝

R S

Query Parsing & Optimization

Query Plan Executor

Query Rewriter

Catalog Manager

Select *
From Blah B
Where B.blah = blah

Query Optimizer

Plan
Generator

Schema
& Statistics

Query Parser

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Plan Cost
Estimator

Schema for Examples
Sailors (sid: integer, sname: text, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: text)

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
– Assume there are 100 boats

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
– Assume there are 10 different ratings

• Assume we have 5 pages to use for joins.

Motivating Example: Plan 1

• Here’s a reasonable query plan:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
AND R.bid=100
AND S.rating>5

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

Motivating Example: Plan 1 Cost

• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• For each page of Sailors,

Scan Reserves (1000 IOs)
• Total: 500 + 500*1000

– 500,500 IOs
• Bad plan!
• Goal of optimization:

– Find less cost (faster) plan that
compute the same answer

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

Plan 2: Selection Pushdown

500,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

Plan 2 Cost Analysis

• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• For each pageful of high-rated Sailors,

Scan Reserves (1000 IOs)

• Total: 500 + 250*1000 = 250,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

Plan 3: More Selection Pushdown

250,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

Plan 3 Cost Analysis

• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• For each pageful of high-rated

Sailors,
Scan Reserves (1000 IOs)

• Total: 500 + 250*1000 = 250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

More Selection Pushdown Analysis
Pushing a selection into the inner
loop of a nested loop join doesn’t
save I/Os! Essentially equivalent
to having the selection above.

srating > 5

psname

sbid=100

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

250,500 IOs 250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

Plan 4: Join Ordering

250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

Plan 4 Cost Analysis

• Let’s estimate the cost:
• Scan Reserves (1000 IOs)
• For each pageful of Reserves

for bid 100,
Scan Sailors (500 IOs)

• Total: 1000 +10*500 = 6000 IOs

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

Plan 5: Materializing Inner Loops

6000 IOs

mat

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Reserves
SCAN

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Plan 5 Cost Analysis

• Let’s estimate the cost:
• Scan Reserves (1000 IOs)
• Scan Sailors (500 IOs)
• Materialize Temp table T1 (250 IOs)
• For each pageful of Reserves for bid

100,
Scan T1 (250 IOs)

• Total: 1000 + 500+ 250 + (10 * 250)
= 4250 IOs

mat

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Plan 6: Join Ordering Again

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED

LOOPS

mat

4250 IOs

mat

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED

LOOPS

Sailors
SCAN

Plan 6 Cost Analysis

• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• Scan Reserves (1000 IOs)
• Materialize Temp table T1 (10 IOs)
• For each pageful of high-rated

Sailors,
Scan T1 (10 IOs)

• Total: 500 + 1000 +10 +(250 *10)
= 4010 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED

LOOPS

mat

Plan 7: Join Algorithm

4010 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

Plan 7 Cost Analysis
• With 5 buffers, cost of plan:
• Scan Reserves (1000)
• Scan Sailors (500)
• Sort high-rated sailors

Note: pass 0 doesn’t do read I/O, just gets input from select.

• Sort reservations for boat 100
Note: pass 0 doesn’t do read I/O, just gets input from select.

• Merge (10+250) = 260
• Total: sum above

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

Plan 7 Cost Analysis
• With 5 buffers, cost of plan:
• Scan Reserves (1000)
• Scan Sailors (500)

• Sort reservations for boat 100

– 2 passes for reserves
pass 0 = 10 to write, pass 1 = 2*10 to read/write

• Sort high-rated sailors

– 4 passes for sailors
pass 0 = 250 to write, pass 1,2,3 = 2*250 to read/write

• Merge (10+250) = 260

1000 + 500 + sort reserves(10 + 2*10* 1) + sort sailors
(250 + 2*250*3) + merge (10+250) = 3540 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

Join Algorithm and Materializing Inner Loops

mat mat

3540 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

Plan 8 Cost Analysis
• With 5 buffers, cost of plan:
• Scan Sailors (500), write T1 (250)
• Scan Reserves (1000), write T2 (10)
• Sort T1
• Sort T2

• How many passes for each sort?
– 2 passes for reserves (2*10*2 to read/write)
– 4 passes for sailors (2*250*4 to read/write)

• Merge (10+250) = 260
• Total:

1000 + 500 + 10 + 250 + 2*10*2 +
2*250*4 + merge (10+250) = 4060 IOs

mat mat

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

Another Join Algorithm

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

matsrating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

4010 IOs

Plan 9 Cost Analysis
• With 5 buffers, cost of plan:

• Scan Sailors (500)
• Scan Reserves (1000)

• Write Temp T1 (10)
• For each blockful of high-rated sailors
• Loop on T1 (⌈ [Sh]/(B-2) ⌉ * [T])

• Total:

500 + 1000 +10 +(ceil(250/3) *10) = 500 +
1000 +10 +(84 *10) = 2350 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

How About Indexes?
• Indexes:

– Reserves.bid clustered
– Sailors.sid unclustered

• Assume indexes fit in memory
Reserves: bid

. . .

Sailors

bid = 100 (on 10 pages)

srating > 5

psname

Reserves
INDEX SCAN

Sailors
INDEX SCANsbid=100

⨝sid=sid
INDEX NEST LOOP

Index Cost Analysis
• No projection pushdown to left for psname

– Projecting out unnecessary fields from
outer of Index NL doesn’t make an I/O difference.

• No selection pushdown to right for srating > 5

– Does not affect Sailors.sid index lookup
• With clustered index on bid of Reserves, we access

how many pages of Reserves?:
– 100,000/100 = 1000 tuples on 1000/100 = 10

pages.
• Join column sid is a key for Sailors.

– At most one matching tuple, unclustered index on sid OK

1010 IOs

srating > 5

psname

Reserves
INDEX SCAN

Sailors
INDEX SCANsbid=100

⨝sid=sid
INDEX NEST LOOP

Index Cost Analysis Part 2
• With clustered index on bid of Reserves, we access how many

pages of Reserves?:
– 100,000/100 (boats) = 1000 tuples on 1000/100 = 10

pages.

• for each Reserves tuple 1000
get matching Sailors tuple (1 IO)

(recall: 100 Reserves per page, 1000 pages)

• 10 + 1000*1 = 1010 IOs

• Cost: Selection of Reserves tuples (10 I/Os); then, for
each, must get matching Sailors tuple (1000); total 1010
I/Os. 1010 IOs

srating > 5

psname

Reserves
INDEX SCAN

Sailors
INDEX SCANsbid=100

⨝sid=sid
INDEX NEST LOOP

Summing up
• There are lots of plans

– Even for a relatively simple query

• Not so clear that’s true!
– Manual query planning can be tedious, technical
– Machines are better at enumerating options than people

• Hence AI
– We will see soon how optimizers make simplifying assumptions

Query Optimization
• Given: A closed set of operators

• Relational ops (table in, table out)
• Physical implementations (of those ops and a few more)

• Plan space
• Based on relational equivalences, different implementations

• Cost Estimation based on
• Cost formulas
• Size estimation, in turn based on

• Catalog information on base tables
• Selectivity (Reduction Factor) estimation

• A search algorithm
• To sift through the plan space and find lowest cost option!

A Naïve Query Optimizer

• Given an input query Q:
1. Enumerate all possible plans for Q

• Too many plans to consider!
2. Estimate the cost of each plan

• Hard to estimate cost accurately given caches etc.
3. Pick plan with the lowest cost

• How? Keep all plans in memory?
• What if there are million alternative ways of executing the Q?

The System R Optimizer

• Plan Space
– Many plans have the same high cost subtree that can be pruned
– Heuristics(aka tricks that usually work):

• Consider only left-deep plans
• Avoid Cartesian products
• Don’t optimize the entire query at once

• Cost estimation
– Inexact is fine as long as we can compare plans

• Better estimators have been developed
• Search Algorithm

– Dynamic Programming

Query Optimization

1. Plan Space

2. Cost Estimation

3. Search Algorithm

Query Blocks: Units of Optimization
• Break query into query blocks
• Optimize one block at a time
• Uncorrelated nested blocks computed once
• Correlated nested blocks are like function calls

– But sometimes can be “decorrelated”
– Recall relational algebra lecture

Query Blocks: Units of Optimization
• For each block, the plans considered are:

– All relevant access methods, for each relation in
FROM clause

– All left-deep join trees
• right branch always a base table
• consider all join orders and join methods

Schema for Examples
Sailors (sid: integer, sname: text, rating: integer,

age: float)
Reserves (sid: integer, bid: integer, day: date,

rname: text)
• Reserves:

– Each tuple is 40 bytes long,
– 100 tuples per page, 1000 pages.
– 100 distinct bids.

• Sailors:
– Each tuple is 50 bytes long,
– 80 tuples per page, 500 pages.
– 10 ratings, 40,000 sids.

“Physical” Properties
• Two common “physical” properties of an output:

– Sort order
– Hash Grouping

• Certain operators produce these properties in output
– E.g., Index scan (result is sorted)
– E.g., Sort (result is sorted)
– E.g., Hash (result is grouped)

• Certain operators require these properties at input
– E.g., MergeJoin requires sorted input

• Certain operators preserve these properties from inputs
– E.g., MergeJoin preserves sort order of inputs
– E.g., Index nested loop join (INLJ) preserves sort order of outer (left)

input

Physically Equivalent Plans

• Same content and same physical properties

Queries Over Multiple Relations

• A System R heuristic: only left-deep join trees
considered
– Restricts the search space
– Left-deep trees allow us to generate all fully pipelined plans

• i.e., intermediate results not written to temporary files
• Not all left-deep trees are fully pipelined (e.g., SM join).

Left-deep tree Linear tree Bushy tree

Plan Space Review
• For a SQL query, full plan space:

– All equivalent relational algebra expressions
• Based on the equivalence rules we learned

– All mixes of physical implementations of those algebra
expressions

• We might prune this space:
– Selection/Projection pushdown
– Left-deep trees only
– Avoid Cartesian products

• Along the way we may care about physical properties
like sorting
– Because downstream ops may depend on them
– And enforcing them later may be expensive

Query Optimization

1. Plan Space

2. Cost Estimation

3. Search Algorithm

Cost Estimation
• For each plan considered, must estimate total cost:

– Must estimate cost of each operation in plan tree
• Depends on input cardinalities.
• sequential scan, index scan, joins, etc.

• Must estimate size of result for each operation in tree!
– Because it determines downstream input cardinalities!
– Use information about the input relations.
– For selections and joins, assume independence of predicates.

• In System R, cost is boiled down to a single number
consisting of #I/O + CPU-factor * #tuples
– Second term estimate the cost of tuple processing

Statistics and Catalogs
• Need info on relations and indexes involved.
• Catalogs typically contain at least:

• Catalogs updated periodically.
– Too expensive to do continuously
– Lots of approximation anyway, so a little slop here is ok.

• Modern systems do more
– Especially keep more detailed statistical information on data values. e.g., histograms

Size Estimation and Selectivity
• Max output cardinality = product of input the cardinalities

of the relations in FROM
• Selectivity (sel) associated with each term in WHERE

– Reflects the impact of the term in reducing result size.
– Selectivity = |output| / |input|
– Selectivity: “Reduction Factor” (RF)
– Always between 0 and 1

Result Size Estimation
• Result cardinality = Max # tuples * product of all

selectivities.
• Term col=value (given Nkeys(col) unique values of col)

– sel = 1/NKeys(col)
• Term col1=col2 (handy for joins too...)

– sel = 1/MAX(NKeys(col1), NKeys(col2))
• Term col>value

– sel = (High(col)-value)/(High(col)-Low(col))
• Term in

– sel = 1/NKeys(col) * # items in the list

postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres

https://github.com/postgres/postgres
https://github.com/postgres/postgres/tree/master/src
https://github.com/postgres/postgres/tree/master/src/include
https://github.com/postgres/postgres/tree/master/src/include/utils

Reduction Factors & Histograms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform distribution approximating DDistribution D

Reduction Factors & Histograms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Equidepth histogram ~ quantilesEquiwidth histogram

Bucket 1
Count=8

Bucket 2
Count=4

Bucket 3
Count=15

Bucket 4
Count=3

Bucket 5
Count=15

Bucket 1
Count=9

Bucket 2
Count=10

Bucket 3
Count=10

Bucket 4
Count=7

Bucket 5
Count=9

Selectivity Example: Join Selectivity

algebraic equivalence:

Join selectivity is selectivity sp Total rows: sp × |R| × |S|

Join selectivity is selectivity spsq Total rows: spsq × |R| × |S|

Selectivity Example: Column Equality

Selectivity Example: Column Equality

Compute Selectivities
• Know how to compute selectivities for basic predicates

– The System R version
– The histogram version

• Assumption 1: uniform distribution within histogram bins
– Within a bin, fraction of range = fraction of count

• Assumption 2: independent predicates
– Selectivity of AND = product of selectivities of predicates
– Selectivity of OR = sum of selectivities of predicates - product of

selectivities of predicates
– Selectivity of NOT = 1 – selectivity of predicates

• Joins are not a special case
– Simply compute the selectivity of all predicates
– And multiply by the product of the table sizes

Summary: Selectivity Estimation
• We need a way to estimate the size of the intermediate tables

Recall cost of each operator =
I/Os (to bring in input) + CPU-factor * # tuples processed

• Output size = input size * operator selectivity

Summary: Selectivity Estimation

• In both cases, for more complex predicates:
– p1∧p2

• selectivity(p1) * selectivity(p2)
– p1∨p2

• selectivity(p1) + selectivity(p2) – (selectivity(p1) *
selectivity(p2))

• Last term is 0 if p1 and p2 are non-overlapping (e.g.,
age>60 OR age<21)

– Not p1 = 1 – selectivity(p1)

Query Optimization

1. Plan Space

2. Cost Estimation

3. Search Algorithm

Enumeration of Alternative Plans
• There are two main cases:

– Single-table plans (base case)
– Multiple-table plans (induction)

• Single-table queries include selects, projects, and
GroupBy/aggregation:
– Consider each available access path (file scan / index)

• Choose the one with the least estimated cost
– Selection/Projection done on the fly
– Result pipelined into grouping/aggregation

Cost Estimates for Single-Relation Plans
• Index I on primary key matches selection:

– Cost is (Height(I) + 1) + 1 for a B+ tree.

• Clustered index I matching selection:
– (NPages(I)+NPages(R)) * selectivity.

• Non-clustered index I matching selection:
– (NPages(I)+NTuples(R)) * selectivity.

• Sequential scan of file:
– NPages(R).

• Recall: Must also charge for duplicate elimination if required

Example

• If we have an index on rating:
– Cardinality = (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples
– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R))

= (1/10) * (50+500) = 55 pages are retrieved. (This is the cost.)
– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) = 4005 pages are retrieved.

• If we have an index on sid:
– Would have to retrieve all tuples/pages. With a clustered index, the cost is 50+500, with

unclustered index, 50+40000.

• Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Enumeration of Left-Deep Plans

• Left-deep plans differ in
– the order of relations
– the access method for each leaf operator
– the join method for each join operator

• Enumerated using N passes (if N relations joined):
– Pass 1: Find best 1-relation plan for each relation
– Pass i: Find best way to join result of an (i -1)-relation plan (as outer) to

the i’th relation. (i between 2 and N.)

• For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.

BA

C

D

AB

D

C

The Principle of Optimality
• Bellman ’57 (slightly adapted to our setting)
• The best overall plan is composed of best decisions on the subplans

– Optimal result has optimal substructure
• For example, the best left-deep plan to join tables A, B, C is either:

– (The best plan for joining A, B) ⨝ C
– (The best plan for joining A, C) ⨝ B
– (The best plan for joining B, C) ⨝ A

• This is great!
– When optimizing a subplan (e.g. A ⨝ B), we don’t have to think about how it will be used later

(e.g. when dealing with C)!
– When optimizing a higher-level plan (e.g. A ⨝ B ⨝ C) we can reuse the best results of

subroutines (e.g. A ⨝ B)!

Dynamic Programming Algorithm for System R

• Principle of optimality allows us to build best subplans
“bottom up”

– Pass 1: Find best plans of height 1 (base table accesses), and record them in
a table

– Pass 2: Find best plans of height 2 (joins of base tables) by combining plans
of height 1, record them in a table

– …
– Pass i: Find best plans of height i by combining plans of height i - 1 with

plans of height 1, record them in a table
– …
– Pass n: Find best plan overall by combining plans of height n-1 with plans of

height 1.

The Basic Dynamic Programming Table

Subset of tables in FROM clause Best plan Cost

{R, S} hashjoin(R,S) 1000

{R, T} mergejoin(R,T) 700

Table keyed on 1st column

A Note on “Interesting Orders”

• Physical property: Order.
When should we care? When is it “interesting”?

• An intermediate result has an “interesting order” if it
is sorted by anything we can use later in the query
(“downstream” the arrows (operator)):
– ORDER BY attributes
– GROUP BY attributes
– Join attributes of yet-to-be-added joins

• subsequent merge join might be good

The Dynamic Programming Table

Subset of
tables in FROM
clause

Interesting-
order
columns

Best plan Cost

{R, S} <none> hashjoin(R,S) 1000

{R, S} <R.a, S.b> sortmerge(R,S) 1500

Table keyed on concatenation of 1st two columns

ßHigher cost, but
may lead to global
optimal plan!

Enumeration of Plans (Contd.)
• First figure out the scans and joins (select-project-join) using dynamic programming

– Avoid Cartesian Products in dynamic programming as follows:
When matching an i -1 way subplan with another table, only consider it if
• There is a join condition between them, or
• All predicates in WHERE have been “used up” in the i -1 way subplan.

• Then handle ORDER BY, GROUP BY, aggregates etc. as a post-processing step
– Via “interestingly ordered” plan if chosen (free!)
– Or via an additional sort/hash operator

• Despite pruning, this System R dynamic programming algorithm is exponential in
#tables.

Example

SELECT S.sid, COUNT(*) AS number
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = “red”
GROUP BY S.sid

Pass 1: Best plan(s) for each relation
– Sailors, Reserves: File Scan
– Also B+ tree on Reserves.bid as interesting order
– Also B+ tree on Sailors.sid as interesting order
– Boats: B+ tree on color

Sailors:
Hash, B+ tree indexes on sid

Reserves:
Clustered B+ tree on bid
B+ on sid

Boats
B+ on color

Best plans after pass 1
Subset of tables in
FROM clause

Interesting-order
columns

Best plan Cost

{Sailors} -- filescan

{Reserves} -- Filescan

{Boats} -- B-tree on color

{Reserves} (bid) B-tree on bid

{Sailors} (sid) B-tree on sid

Pass 2
// for each left-deep logical plan
for each plan P in pass 1
for each FROM table T not in P

// for each physical plan
for each access method M on T

for each join method
generate P ⨝ M(T)

– File Scan Reserves (outer) with Boats (inner)
– File Scan Reserves (outer) with Sailors (inner)
– Reserves Btree on bid (outer) with Boats (inner)
– Reserves Btree on bid (outer) with Sailors (inner)
– File Scan Sailors (outer) with Boats (inner)
– File Scan Sailors (outer) with Reserves (inner)
– Boats Btree on color with Sailors (inner)
– Boats Btree on color with Reserves (inner)

• Retain cheapest plan for each (pair of relations, order)

Subset of tables in
FROM clause

Interesting-order
columns

Best plan Cost

{Sailors} -- filescan
{Reserves} -- Filescan
{Boats} -- B-tree on color
{Reserves} (bid) B-tree on bid
{Sailors} (sid) B-tree on sid
{Boats, Reserves} (B.bid)

(R.bid)
SortMerge(B-tree on
Boats.color, filescan
Reserves)

Etc...

Best plans after pass 2

Pass 3 and beyond
• Using Pass 2 plans as outer relations, generate plans for

the next join in the same way as Pass 2
– E.g. {SortMerge(B-tree on Boats.color, filescan Reserves)} (outer) |

with Sailors (B-tree sid) (inner)
• Then, add cost for groupby/aggregate:

– This is the cost to sort the result by sid, unless it has already
been sorted by a previous operator.

• Then, choose the cheapest plan

Now you understand the optimizer!

• Benefit #1: You could build one.
• Benefit #2: You can influence one

– People who write non-trivial SQL often get frustrated with the optimizer
• It picked a crummy plan!
• It didn’t use the index I built!
• Etc.

– Understanding the optimizer can lead you to:
• Design your DB & Indexes better
• Avoid “weak spots” in your optimizer’s implementation
• Coax your optimizer to do what you want

Summary
• Optimization is the reason for the lasting power of the

relational system
• But it is primitive in some SQL databases, and in the Big Data

stack
• Many new areas:

– Smarter statistics (fancy histograms, “sketches”)
– Auto-tuning statistics
– Adaptive runtime re-optimization
– Multi-query optimization
– Parallel scheduling issues

Reading and Next Class

• Query Optimization: Ch 15
• Next: Security & SQL injection: Ch 21

