
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Midterm Review

Midterm Exam Topics
• Relational Algebra
• Entity-Relationship (E/R)
• SQL
• Storing and Indexing
• Hashing and Sorting
• Query Processing

Relational Algebra
• Selection: σcondition (R)
• Projection: πatt−list (R)
• Cartesian product: R X S
• Set union: R U S
• Set difference: R - S
• Intersection ∩
• Joins (▹◃)
• Rename (ρ)

E/R Diagrams: Relationships

• Show a many-one relationship by an arrow entering the
“one” side. Many One

• Show a one-one relationship by arrows entering both
entity sets. One One

• In some situations, we can also assert “exactly one,” i.e.,
each entity of one set must be related to exactly one
entity of the other set. To do so, we use a rounded arrow.
Exactly One

E/R Example
• Each department teaches multiple courses. Each

course has a number.

Converting E/R Diagrams to Relational Designs

• Entity Set à Relation
– Attribute of Entity Set à Attribute of a Relation

• Relationship à relation whose attributes are
– Attribute of the relationship itself
– Key attributes of the connected entity sets

• Several special cases:
– Weak entity sets
– Combining relations (especially for many-one relationships)
– ISA relationships and subclasses

• Also note how referential integrity comes in (foreign
keys)

Basic SQL Query
SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification;

• Relation-list: A list of relation names (possibly with
range- variable after each name)

• Target-list: A list of attributes of relations in relation-list
• Qualification: conditions on attributes
• DISTINCT: optional keyword for duplicate removal

– Default = no duplicate removal!
• ORDER BY: for sorting values

Boolean operators

• NOT, AND, and OR

SELECT name , num dogs FROM Person
WHERE age >= 18
AND num dogs > 3;

NULL
• SELECT name , num dogs FROM Person

WHERE age <= 20 OR num dogs = 3;

Aggregate Functions
• SUM, AVG, MAX, MIN, and COUNT
• The input to an aggregate function is the name of a

column, and the output is a single value that summarizes
all the data within that column.

• Every aggregate ignores NULL values except for
COUNT(*)
MIN(num dogs)
AVG(num dogs)
COUNT(num dogs)
COUNT(*)

Group By and Having
• SELECT age, AVG(num dogs) FROM Person

WHERE age >= 18
GROUP BY age
HAVING COUNT(∗) > 1;

Illegal Queries

• SELECT age, AVG(num dogs) FROM Person;

• SELECT age, num dogs FROM Person
GROUPBY age;

You Should Already Know
• SELECT <columns>

FROM <tbl>
WHERE <predicate>
GROUP BY <columns>
HAVING <predicate>
ORDER BY <columns>
LIMIT <num>;

• https://github.com/VTCourses/CS4604_Labs/tree/m
aster/2.select

• https://github.com/VTCourses/CS4604_Labs/tree/m
aster/3.more_queries

https://github.com/VTCourses/CS4604_Labs/tree/master/2.select
https://github.com/VTCourses/CS4604_Labs/tree/master/3.more_queries

Other SQL Functions
• DATEDIFF()
• ROUND(), Sum(), min(), max(), count()
• IFNULL()
• IF()
• ABS(), avg()
• MOD()
• Between…and
• CASE…WHEN
• A lot more: https://www.w3schools.com/sql/sql_ref_mysql.asp

Join Variants

• Inner Joins
• Outer Joins
• Natural Join
• https://github.com/VTCourses/CS4604_Labs/tree/master/4.joi
ns

SELECT <column expression list>
FROM table_name

[INNER | NATURAL
| {LEFT |RIGHT | FULL } {OUTER}] JOIN table_name
ON <qualification_list>

WHERE …

https://github.com/VTCourses/CS4604_Labs/tree/master/4.joins

More SQL
• Sub-queries
• Correlated Subqueries
• SQL DDL
• Constraints
• Triggers
• Functions
• Note how referential integrity can be enforced (foreign

key; on delete cascade etc.)

Tree Indexes

• B+-Trees
– Carefully understand the Definition!
– Searching
– Inserting
– Deleting

Example: B+ Tree

• Each interior node is at least partially full:
– d <= #entries <= 2d (* root: 1<= #entries <= 2d)
– d: order of the tree (max fan-out = 2d + 1)

• Data pages at bottom need not be stored in logical order
– Next and prev pointers

• Height: the length of a path from the root to a leaf

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Hashing/Sorting
• Hashing

– Static Hashing
– Extendible Hashing
– Linear Hashing

• Sorting
– Two-way merge sort
– External merge sort
– B+ trees for sorting

• How to search and build, internalize the structure
• Understand the process, how to cost it, how many passes

it takes etc.

Hashing Summary
• B-trees and variants: in all DBMSs
• Hash indices: in some DBMSs

– Hashing is useful for joins
• Hashing performs well on exact match queries
• B+ tree performs well on:

– Search:
• exact match queries
• range queries
• nearest-neighbor queries

– Insertion and deletion
– Smooth growing and shrinking

Sorting Summary

• External sorting is important
• External merge sort minimizes disk I/O cost:

– Pass 0: Produces sorted runs of size B (# buffer pages)
– Later passes: merge runs.

• Clustered B+ tree is good for sorting
• Unclustered B+ tree is usually very bad

Join techniques

• Nested-loops join
– Simple Nested Loop Join
– Page Nested Loop Join
– Block Nested Loop Join

• Index-nested loops join
• Sort-merge join
• Hash join

– Naive Hash Join
– Grace Hash Join

Reading and Next Class

• Midterm Review
• Next: Project Interim presentation

