
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Storing Data and Indexes

Today’s Topics

• Storing data
• Indexes

DBMS Layers

Database
Management

System

Database

Query Parsing
& Optimization

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

SQL Client

Queries

File of Records
• Collections of data records are stored in pages, and

collections of pages make up a file
• Think of “file” as an abstraction referring to a collection of

pages, not necessarily a single physical construct
• Generally, a record is row-oriented, storing all the

attributes from one row in a table
• Records might be of other types

– Index data entries
– Catalog metadata
– Etc.

Page
• A page is the basic unit of storage.
• All pages are same size, usually 4-16KB
• Page stores related records (e.g., tuples from one

particular table)
• Typical implementation is for pages to have a

directory to identify the offset of records.
– Variable record size
– Allows for stable Record Id (pointer)
– Record Id = <page#, slot#>
– Very useful with indexing

Disks and Files

• DBMS stores information on disks
– But disks are relatively slow

• Major implications for DBMS design
– READ: disk -> main memory (RAM)
– WRITE: RAM -> disk (reverse)
– Both are high-cost operations, relative to in-memory

operations, so must be planned carefully

In-memory Database

• Redis, Memcached, etc.
• Amazon ElastiCache for Redis can scale up to 250

nodes and enables a maximum in-memory data size
of 170.6 TB
– 42597.10 * 12 = 511165.2 per year

• Databases today in the 10-150+ TB range
• Amazon sold $10.4 billion worth of goods on Prime

Day (2 days!)
• How about petabyte database?

The Storage Hierarchy

Bigger, Slower

Smaller, Faster

• Main memory (RAM) for
currently used data

• Disk for the main database
(secondary storage)

• Tapes for archiving older
versions of the data (tertiary
storage)

Disks

• Secondary storage device of choice
• Main advantage over tapes: random access vs.

sequential
• Data is stored and retrieved in units called disk

blocks or pages
• Unlike RAM, time to retrieve a disk page varies

depending upon location on disk
– relative placement of pages on disk is important!

Anatomy of a Disk

• Sector
• Track
• Cylinder
• Platter
• Block size = multiple

of sector size (which
is fixed)

Cylinder

Block

Accessing a Disk Page

• Time to access (read/write) a disk block:
– seek time: moving arms to position disk head on track

(about 1 to 20msec)
– rotational delay: waiting for block to rotate under head (0

to 10msec)
– transfer time: actually moving data to/from disk surface (<

1msec per 4KB page)
• Key to lower I/O cost: reduce seek/rotation delays
• For shared disks, much time spent waiting in queue

for access to arm/controller

Arranging Pages on Disk

• “Next” block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

• Accessing ‘next’ block is cheap
• A useful optimization: Prefetching

– Prefetch pages

Memory and Disk

• A unit of (disk) I/O refers to this movement of a page
between secondary storage and the Buffer Pool
(memory)

• Memory access much faster than disk I/O (~ 1000x)
• “Sequential” I/O faster than “random” I/O (~ 10x)
• Sorting

– Pack info in blocks
– Try to fetch nearby blocks (sequentially)
– Index: used to sort, or group, the rows in the table

Buffer Manager

• Managing pages in memory
• Receives page requests from the file and index manager
• Communicates with the disk space manager to perform

the required disk operations:
– When pages are evicted from memory
– When new pages are read into memory

• Higher levels of the DBMS need only ask the Buffer
Manager for a page
– Regardless of whether the page is on disk or in Buffer Pool

Buffer Management Levels of Abstraction

Disk

Files and Index Management

Buffer Management

Disk Space Management

RAM

Buffer Management

Write
Page

Read
Page

Write
Page

Read
Page

DiskDisk Space Manager

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

RAM

Frame

Frame

Frame Frame

Page 3FrameFramePage 1 Page 4

Buffer Manager
API Request

Message:
Request: Read page 3

API Request

Buffer Pool

FrameFrame Frame FrameFrameFramePage 1 Page 3Page 2 Page 4Page 6 Page 5

FrameId PageId Dirty Bit Pin Count
1 1 0 0
2 2 1 1
3 3 0 0
4 6 0 2
5 4 0 0
6 5 0 0

1 2 3 4 5 6

• Frame ID is uniquely associated with a
memory address

• Page ID for determining which page a
frame currently contains

• Dirty Bit is set if the page was modified
• Pin Count is incremented while a thread

needs to access the page

Page Replacement

1. If requested page is not in pool:
a. Choose an un-pinned (pin_count = 0) frame for replacement,

using a replacement policy.
b. If the “dirty bit” for the replacement frame is on, write current

page to disk, mark “clean”
c. Read requested page into the replacement frame

2. Pin the page and return the (main memory) address to the requester

• If requests can be predicted (e.g., sequential scans) pages can be
pre-fetched (several pages at a time)

Page Replacement Policy

• Page is chosen for replacement by a
replacement policy:
– Least-recently-used (LRU), Clock
– Most-recently-used (MRU)

• Policy can have big impact on #I/Os
– Depends on the access pattern.

LRU vs MRU
Buffer ManagerBuffer ManagerBuffer Manager

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Frame

Frame

Frame Frame

FrameFrame

Disk Space Manager

Page 1 Page 2 Page 3

Page 4

Page 5

Page 5 Page 6

LRU
• Cache Hits: 0
• Attempts 6

MRU
• Cache Hits: 0
• Attempts 6

LRU
• Cache Hits: 0
• Attempts 14

MRU
• Cache Hits: 6
• Attempts 14

Summary

• LRU wins for random access

• MRU wins for repeated sequential
• Attempts to minimize “cache misses”

– By replacing pages unlikely to be referenced
– By prefetching pages likely to be referenced

• Hybrids are not uncommon in modern DBMSs
• Machine / Deep learning on replacement policy

DB File Structures
• Unordered Heap Files

– Records placed arbitrarily across pages

• Clustered Heap Files
– Records and pages are grouped

• Sorted Files
– Pages and records are in sorted order

• Index Files
– B+ Trees, Linear Hashing, …
– May contain records or point to records in other files

Indexes

• An index is a data structure that helps speed up
reads on a specific key

CREATE INDEX StudentsInd ON Students(ID);

CREATE INDEX CoursesInd ON
Courses(Number, DeptName);

Types of Indexes

• Primary: index that includes the primary key
– Used to enforce constraints

• Secondary: index on non-key attribute
• Clustering: order of the rows in the data pages

correspond to the order of the rows in the index
– Only one clustered index can exist in a given table
– Useful for range predicates

• Non-clustering: physical order not the same as
index order

Using Indexes: Equality Searches

• Given a value v, the index takes us to only those
tuples that have v in the attribute(s) of the index.

• E.g. (use CourseInd index)
SELECT Enrollment FROM Courses

WHERE Number = “4604” and
DeptName = “CS”

Using Indexes (2): Range Searches

• Find all students with gpa > 3.0
• May be slow, even on sorted file
• Solution: Create an “index” file

B-Tree Index

• B-Trees is the most successful family of index
schemes (B-trees, B+-trees, B*-trees) used in
DBMSs. It’s what you’ll get with a basic create index
statement

• Can be used for primary/secondary, clustering/non-
clustering index.

• B-Tree indexes are balanced, meaning all the leaf
nodes have the same path length from the root
node

B-Tree Index

B+ Tree
• In a variation called B+ Tree only leaf nodes can

have data records, and leaf nodes are linked
with siblings
– Search cost is more predictable
– Tree can have smaller height
– Enable sequential scanning of leaf nodes

Example: B+ Tree

• Each interior node is at least partially full:
– d <= #entries <= 2d (* root: 1<= #entries <= 2d)
– d: order of the tree (max fan-out = 2d + 1)

• Data pages at bottom need not be stored in logical order
– Next and prev pointers

• Height: the length of a path from the root to a leaf

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

B+ Trees and Scale

• The height of a B+ tree is rarely more than 3 or 4
• How big is a B+ tree

– d = 2
• Fan-out = 5
• Height 1: 5 x 4 = 20 Records
• Height 3: 53 x 4 = 500 Records

– d = 50
– d = 100

B+ Trees in Practice

• Typical order: 1600. Typical fill-factor: 67%.
– average fan-out = 2144
– (assuming 128 Kbytes pages at 40Bytes per record)

• At typical capacities
– Height 1: 21442 = 4,596,736 records
– Height 2: 21443 = 9,855,401,984 records

Searching the B+ Tree: Find 27
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

27*

(20, Tim) (7, Dan) (5, Kay) (3, Jim) (27, Joe) (34, Kit) (1, Kim) (42, Hal)

Page 1 Page 2 Page 3 Page 4

Pa
ge

Id,
Re

co
rd

 Id

Inserting 25* into a B+ Tree Part 1

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

25*

• Find the correct leaf

Inserting 25* into a B+ Tree Part 2

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 25* 33* 34* 38* 39*

Root Node

• Find the correct leaf
• If there is room in the leaf just add the entry

Inserting 25* into a B+ Tree Part 3

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27*25* 29* 33* 34* 38* 39*

Root Node

• Find the correct leaf
• If there is room in the leaf just add the entry

• Sort the leaf page by key

Inserting 8* into a B+ Tree: Find Leaf

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

8*

• Find the correct leaf

Inserting 8* into a B+ Tree: Insert

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

8*

• Find the correct leaf
• Split leaf if there is not enough room

Inserting 8* into a B+ Tree: Split Leaf

• Find the correct leaf
– Split leaf if there is not enough room
– Redistribute entries evenly

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

8*

5* 7* 8*

Inserting 8* into a B+ Tree: Split Leaf, cont

13 17 24 30

5* 7* 8*

2* 3* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

2* 3*

• Find the correct leaf
• Split leaf if there is not enough room
• Redistribute entries evenly
• Fix next/prev pointers

Inserting 8* into a B+ Tree: Fix Pointers

13 17 24 30

14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

2* 3* 5* 7* 8*

• Find the correct leaf
• Split leaf if there is not enough room
• Redistribute entries evenly
• Fix next/prev pointers

Inserting 8* into a B+ Tree: Mid-Flight

13 17 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

• Something is still wrong!

I am an
orphan!

Inserting 8* into a B+ Tree: Copy Middle Key

13 17 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

• Copy up from leaf the middle key
• No room in parent? Recursively split index nodes

5

13

Inserting 8* into a B+ Tree: Split Parent, Part 1

17 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

5

• Copy up from leaf the middle key
• No room in parent? Recursively split index nodes

• Redistribute the rightmost d keys

302417

Inserting 8* into a B+ Tree: Split Parent, Part 2

13

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

• Copy up from leaf the middle key
• No room in parent? Recursively split index nodes

• Redistribute the rightmost d keys

5 302417

Inserting 8* into a B+ Tree: Root Grows Up

13

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

• Push up from interior node the middle key
• Now the last key on left

• No room in parent? Recursively split index nodes
• Redistribute the rightmost d keys

5 17 24 30

13

Inserting 8* into a B+ Tree: Root Grows Up, Pt 2

• Recursively split index nodes
– Redistribute right d keys
– Push up middle key

17

24

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node171717

5 30

Inserting 8* into a B+ Tree: Root Grows Up, Pt 3

• Recursively split index nodes
– Redistribute right d keys
– Push up middle key

17

13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

5

Copy up vs Push up!

• Notice:
– The leaf entry (5) was copied up
– The index entry (17) was pushed up

17

13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

5

Inserting 8* into a B+ Tree: Final

• Check invariants
• Key Invariant:

• Node[…, (KL, PL), …] è
KL<= K for all K in PL Sub-tree

• Occupancy Invariant:
• d <= # entries <= 2d

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

B+ Tree Insert: Algorithm Sketch

1. Find the correct leaf L.

2. Put data entry onto L.
– If L has enough space, done!
– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key
• Insert index entry pointing to L2 into parent of L.

B+ Tree Insert: Algorithm Sketch Part 2

• Step 2 can happen recursively
– To split index node, redistribute entries evenly, but

push up middle key. (Contrast with leaf splits)

• Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.

Before and After Observations
• Notice that the root was split to increase the height

– Grow from the root not the leaves
– All paths from root to leaves are equal lengths

• Does the occupancy invariant hold?
– Yes! All nodes (except root) are at least half full

After
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root NodeBefore

Insert: The Deferred Split

5 13 17 24

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 23* 24* 27* 29*

Root Node

Page 2 Page 3 Page 5 Page 7 Page 8

Insert 21

Insert: The Deferred Split

5 13 17 23

2* 3* 5* 7* 8* 14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

Root Node

Page 2 Page 3 Page 5 Page 7 Page 8

Done Insert 21

Deleting a Data Entry from a B+ Tree
• Start at root, find leaf L where entry belongs
• Remove the entry

– If L is at least half-full, done!
– If L underflows

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L)
• If re-distribution fails, merge L and sibling.

• update parent
• and possibly merge, recursively

Deletion from B+Tree

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Delete 19

Deletion from B+Tree

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Done Delete 19
Next: Delete 20

Deletion from B+Tree

17

5 13 27 30

2* 3* 5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Done Delete 20
Next: Delete 24

Deletion from B+Tree

17

5 13 30

2* 3* 5* 7* 8* 14* 16* 22* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Delete 24 – step 1

Deletion from B+Tree

5 13 17 30

2* 3* 5* 7* 8* 14* 16* 22* 27* 29* 33* 34* 38* 39*

Root Node Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Delete 24 – step 2 Done

Deletion from B+Tree: New Example

22

5 13 17 20 30

2* 3* 5* 7* 8* 14* 16*

Root Node

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

During deletion of 24 – step 1

17* 18* 20* 21* 22* 27* 29*

Page 8

33* 34* 38* 39*

Deletion from B+Tree: New Example

17

5 13 20 22 30

2* 3* 5* 7* 8* 14* 16*

Root Node

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

During deletion of 24 – step 2

17* 18* 20* 21* 22* 27* 29*

Page 8

33* 34* 38* 39*

Bulk Loading of a B+ Tree

• Suppose we want to build an index on a large table
– Insert repeatedly? Too slow!

• Constantly need to search from leaf
• Leaves and internal nodes mostly half full
• Modifying random pages à Poor cache efficiency

16

Smarter Bulk Loading a B+ Tree

4 7 10 134 7 10 13

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

• Sort the input records by key:
• 1*, 2*, 3*, 4*, …
• We’ll learn a good disk-based sort algorithm soon!

• Fill leaf pages to some fill factor (e.g. ¾)
• Updating parent until full

Smarter Bulk Loading a B+ Tree Part 2

• Sort the input records by key:
• 1*, 2*, 3*, 4*, …

• Fill leaf pages to some fill factor (e.g. ¾)
• Update parent until full
• Then split parent (50/50) and copy to sibling

134 7

10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

16

Smarter Bulk Loading a B+ Tree Part 3

• Lower left part of the tree is never touched again
• Occupancy invariant maintained

134 7

10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

16

Never Touched Again

19 22

19* 20* 21* 22* 23* 24*

134 7

10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

16

Smarter Bulk Loading a B+ Tree Part 4

• Sort the input records by key:
• 1*, 2*, 3*, 4*, …

• Fill leaf pages to some fill factor (e.g. ¾)
• Update parent until full
• Then split parent

Bulk Loading Summary

• Option 1: Multiple inserts
– Slow
– Does not give sequential storage of leaves

• Option 2: Bulk Loading
– Fewer I/Os during build.
– Leaves will be stored sequentially (and linked, of course)
– Can control “fill factor” on pages.

B+ Tree Summary

• B+ Tree is a dynamic structure
– Inserts/deletes leave tree height-balanced; logFN cost
– High fanout (F) means depth rarely more than 3 or 4.
– Almost always better than maintaining a sorted file.
– Typically, 67% occupancy on average
– Usually preferable to ISAM; adjusts to growth gracefully.

• Bulk loading can be much faster than repeated inserts for creating a
B+ tree on a large data set.

• B+ tree widely used because of its versatility
– One of the most optimized components of a DBMS.
– Concurrent Updates
– In-memory efficiency

B+ Tree Animation

• Great animation online of B+ Trees

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

Summary
• The unit of (disk) I/O is a page.
• A page includes multiple records.
• The buffer manager moves pages between

secondary storage and main memory
• There are different methods to physically organize

data records.
• There are also different methods to organize

pointers to data records in order to speed up
searches without affecting the underlying record
organization

Reading and Next Class

• Storing Data and Indexes
– Ch 8.1, 8.2
– Ch 9.1, 9.4
– Ch 10.3 - 10.8

• Next: Hashing and Sorting
– Ch11
– Ch 13

Credits

• The animation Page 33-50 and some slides are
adopted from UC Berkeley CS W 186.

