
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Hashing and Sorting

Today’s Topics
• Hashing

– Static Hashing
– Extendible Hashing
– Linear Hashing

• Sorting
– Two-way merge sort
– External merge sort
– Fine-tunings
– B+ trees for sorting

Hashing

• Many times, we don’t require order
– Problem: “find EMP record with ssn=123”

• Static Hashing
• Dynamic hashing techniques:

– Extendible Hashing
– Linear Hashing

(Static) Hashing
• Each hash bucket has one primary

page and possibly additional
overflow pages

• Page holds many records
• hash function: h(key) = slot-id

123; Smith; Main str

0

M - 1

(Static) Hashing

• Insert:
1. hash function: h(key) find the correct bucket
2.1 There is a space, insert a data there
2.2 There is no space

step 1. allocate a new overflow page and then insert a data there
step 2. add that page to the overflow chain of the bucket

(Static) Hashing

• Delete:
1. hash function: h(key) find the correct bucket
2. Locate the data then remove it
2.1 Last item in an overflow page? overflow page

Cost of (Static) Hashing

• Search: One disk I/O
• Insert and Delete: Two disk I/O
• Many overflow pages à poor performance

Problem with static hashing

• The number of bucket is fixed
• Underflow:

– A lot of space is wasted (underutilization)
• Overflow:

– Poor performance
• Better solution: Dynamic hashing

Extendible hashing

• Idea:
– Use a directory of pointers to buckets
– Double the directory
– Double the size of the number of buckets
– Splitting the bucket that overflowed

Extendible hashing

2

2
4* 12* 32* 16*

2
1* 5* 21*

2
10*

2
15* 7* 19*

DIRECTORY

00
01
10
11

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Search 5: 101

Extendible hashing

2

2
4* 12* 32* 16*

2
1* 5* 21* 13*

2
10*

2
15* 7* 19*

DIRECTORY

00
01
10
11

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Insert 13: 1101

Extendible hashing

2

2
4* 12* 32* 16*

2
1* 5* 21* 13*

2
10*

2
15* 7* 19*

DIRECTORY

00
01
10
11

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Insert 20: 10100
Full!

Extendible hashing

2

2
32* 16*

2
1* 5* 21* 13*

2
10*

2
15* 7* 19*

DIRECTORY

00
01
10
11

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Insert 20: 10100

Step 1: split the bucket
Step 2: redistribute the contents
by last three bits of h(r)

2
4* 12* 20*

4 100
12 1100
32 100000
16 10000
20 10100

Extendible hashing

2

3
32* 16*

2
1* 5* 21* 13*

2
10*

2
15* 7* 19*

DIRECTORY

000
001
010
011

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Insert 20: 10100

Step 3: double the directory

3
4* 12* 20*

100
101
110
111

Extendible hashing

2

3
32* 16*

2
1* 5* 21* 13*

2
10*

2
15* 7* 19*

DIRECTORY

000
001
010
011

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Insert 9: 1001

3
4* 12* 20*

100
101
110
111

Full!

Extendible hashing

2

3
32* 16*

3
5* 21* 13*

2
10*

2
15* 7* 19*

DIRECTORY

000
001
010
011

GLOBAL DEPTH

LOCAL DEPTH

DATA PAGES

Insert 9: 1001

3
4* 12* 20*

100
101
110
111

Step 1: split the bucket
Step 2: redistribute the contents
by last three bits of h(r)
Step 3: no need to double the
directory

3
1* 9*

How to know if we need to
double a directory?
• Global and local depth are the

same (Double!)

Cost of Extendible Hashing

• Search: One disk I/O or (worse) two I/Os (and rare)
• Insert and Delete: Two disk I/O
• Better performance
• Special case: collisions, or data entries with the same

hash value.
– Need overflow pages

Linear hashing

• It does not require a directory
• Deal naturally with collisions
• Still need overflow pages and chains
• Utilizes a family of hash functions: h0, h1, h2, ….

– h0: M buckets
– h1: 2M buckets
– h2: 4M buckets
– …

Linear hashing

• Number of N buckets (N = 4)
• d0 is the number of bits needed to represent N

(d0 = 2)
• h0 is h mod 4: 0 to 3
• d1 = d0 + 1 = 3
• h1 is h mod (2 * 4): 0 to 7

Linear hashing
• h(x) = x mod N (N = 4)
• Assume capacity: 4 records per bucket
• Insert key 43 (101011)

Bucket ID 00 01 10 11

32 44
36

25 9
5

14 18
10 30

31 35
7 11

Next = 0
Full!

Level = 0

Linear hashing – split first
• h(x) = x mod N (N = 4)
• Assume capacity: 4 records per bucket
• Insert key 43 (101011)

Bucket ID 000 01 10 11

32 25 9
5

14 18
10 30

31 35
7 11

Next = 1

Level = 0

100

44 36

Linear hashing – after split
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 43 (101011)

Bucket ID 000 01 10 11

32 25 9
5

14 18
10 30

31 35
7 11

Next = 1

Level = 0

100

44 36

43
overflow page

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 37 (100101)

Bucket ID 000 01 10 11

32 25 9
5 37

14 18
10 30

31 35
7 11

Next = 1

Level = 0

100

44 36

43
overflow page

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 29 (11101)

Bucket ID 000 01 10 11

32 25 9
5 37

14 18
10 30

31 35
7 11

Next = 1

Level = 0

100

44 36

43
overflow page

Full

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 29 (11101)

Bucket ID 000 001 10 11

Next = 2

Level = 0

100

32 25 9 14 18
10 30

31 35
7 11

44 36

43 overflow page

101

5 37
29

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 22 (10110)

Bucket ID 000 001 10 11

Next = 2

Level = 0

100

32 25 9 14 18
10 30

31 35
7 11

44 36

43 overflow page

101

5 37
29

Full!

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 22 (10110)

Bucket ID 000 001 010 11

Next = 3

Level = 0

100

32 25 9 18 10 31 35
7 11

44 36

43
overflow page

101

5 37
29

110

14 30
22

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 66 (1000010) and 34 (100010)

Bucket ID 000 001 010 11

Next = 3

Level = 0

100

32 25 9 18 10
66 34

31 35
7 11

44 36

43 overflow page

101

5 37
29

110

14 30
22

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 50 (110010)

Bucket ID 000 001 010 11

Next = 3

Level = 0

100

32 25 9 18 10
66 34

31 35
7 11

44 36

43 overflow page

101

5 37
29

110

14 30
22

Full!

Linear hashing
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 50 (110010)

Bucket ID 000 001 010 011

Next = 0

Level = 1

100

32 25 9 18 10
66 34

43 35
11

44 36

50 overflow page

101

5 37
29

110

14 30
22

111

31 7

Cost of Linear Hashing

• Search: One disk I/O or more when having overflow
pages (average 1.2 I/Os)

• Insert and Delete: Two disk I/O (unless a split is
triggered)

• Better performance

Example: Linear hashing
• h(x) = x mod N (N = 4)
• Assume capacity: 3 records per bucket
• Insert key 17 (10001)

Bucket ID 00 01 10 11

4 8 5 9 13 6 7 11

Example: Linear hashing – after split
• h0(x) = x mod N (N = 4)
• h1(x) = x mod (2*N)
• Insert key 17 (10001)

Bucket ID 000 01 10 11

8 5 9 13 6 7 11

100

4

17 overflow

Next = 1

Linear hashing – searching
• h0(x) = x mod N (for the un-split buckets)
• h1(x) = x mod (2*N) (for the split ones)
• Q1: find key ‘6’? Q2: find key ‘4’? Q3: key ‘8’?

Bucket ID 000 01 10 11

8 5 9 13 6 7 11

100

4

17 overflow

Next = 1

Hashing Summary
• B-trees and variants: in all DBMSs
• Hash indices: in some DBMSs

– Hashing is useful for joins
• Hashing performs well on exact match queries
• B+ tree performs well on:

– Search:
• exact match queries
• range queries
• nearest-neighbor queries

– Insertion and deletion
– Smooth growing and shrinking

Sorting

• Two-way merge sort
• External merge sort
• Fine-tunings
• B+ trees for sorting

Why Sort?

• select ... order by
– e.g., find students in increasing gpa order

• bulk loading a (B+) tree index
• duplicate elimination (select distinct)
• select ... group by
• Sort-merge join algorithm involves sorting

Two-Way Merge Sort
• Overview: break file into smaller subfiles, sort each

subfile, and merge
• Utilizes only three (buffer) pages of main memory
• Pass 0: Read a page, sort it, write out

– only one buffer page is used (a sorted run)
– In-memory sorting technique. E.g., Quicksort

• Pass 1, 2, 3, ...k: Requires 3 buffer pages
– merge pairs of runs into runs twice as long
– three buffer pages used.

• Cost: 2N(𝑙𝑜𝑔!𝑁 + 1) I/Os

Two-Way Merge Sort

• Cost: 2N(𝑙𝑜𝑔!𝑁 + 1) I/Os
• N = 8, 2 * 8 * (3+1) = 64 I/Os

Two-Way Merge Sort

• Each pass we read and
write each page in file

Two-Way Merge Sort

• Each pass we read and
write each page in file

Two-Way Merge Sort

• Each pass we read and
write each page in file

Two-Way Merge Sort

• Each pass we read and
write each page in file

Two-Way Merge Sort

• Each pass we read and
write each page in file

• N pages in the file:
𝑙𝑜𝑔!𝑁 + 1

• Total cost:
2N(𝑙𝑜𝑔!𝑁 + 1) I/Os

• Divide and conquer:
sort subfiles and merge

External Merge Sort
• Two-Way Merge Sort: We have more then three buffer

pages available in main memory, we just use three.
(underutilize)

External Merge Sort
• A large file with N pages needs to be sorted
• B buffer pages in memory
• Pass 0: use B buffer pages. Produce ⎡ N / B⎤ sorted runs of B pages each.
• Pass 1, 2, ..., etc.: merge B-1 runs

1

...

B-1

B
1

...

⌈N/B⌉

Conquer MergeSorted Runs
length B (last run’s length is variable)

Sorted Runs
Length B(B-1) (last run’s length is variable)

Pass 0 Pass 1, 2…

External merge sort
• Number of passes:

1+ ⎡logB−1 ⎡N / B⎤⎤ = 1+ ⎡logB−1 N1⎤, N1 = ⎡ N / B⎤
• Cost = 2N * (# of passes)

Cost of External Merge Sort
• Example: we have 5 buffer pages and want to sort a file

with 108 pages
• Pass 0: ⎡108/5 ⎤ = 22 sorted runs of 5 pages each
• Pass 1: ⎡22/4 ⎤ = 6 sorted runs of 20 pages
• Pass 2: ⎡6/4 ⎤ = 2 sorted runs, one run with 80 pages

and one run with 28 pages
• Pass 3: Sorted file of 108 pages
• Formula check: ⎡ log4 22 ⎤ = 3 ... + 1 à 4 passes

Cost of External Merge Sort
• Each pass we read and write 108 pages
• Total cost: 2 * 108 * 4 = 864 I/Os
• N1 = ⎡ N / B⎤ = ⎡108/5 ⎤ = 22
• B = 5
• 2N * (1+ ⎡logB−1 N1⎤) = 2 * 108 * 4

Number of Passes of External Sort

Memory Requirement for External Sorting
• How big of a table can we sort in two passes?

– Each “sorted run” after Phase 0 is of size B
– Can merge up to B-1 sorted runs in Phase 1

• Answer: B(B-1).
– Sort N pages of data in about B = 𝑁 space

1

...

B-1

B
1

...

⌈N/B⌉

Conquer MergeSorted Runs
length B (last run’s length is variable)

Sorted Runs
Length B(B-1) (last run’s length is variable)

Pass 0 Pass 1, …

Cost Metric

• We assumed random disk access (# of page I/Os)
• Blocked I/O: a single request to read(or write)

sequentially
• Also, double buffering: Keep the CPU busy while an I/O

op is in progress

Blocked I/O • "#$
$

runs

• 10 buffer pages:
– 9 runs (one buffer blocks)
– 4 runs (two buffer blocks)

N B = 1000 B = 5000 B = 10,000 B = 50,000

Double Buffering
• To reduce wait time for I/O request to complete, can

prefetch into `shadow block’
– Potentially, more passes; in practice, most files still sorted in 2-3

passes.

Using B+ Trees for Sorting

• Quicksort is a fast way to sort in memory
• Scenario: Table to be sorted has B+ tree index on

sorting column(s).
• Idea: Can retrieve records in order by traversing leaf

pages.
• Is this a good idea?
• Cases to consider:

– B+ tree is clustered
– B+ tree is not clustered

Good idea!
Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-
most leaf, then
retrieve all leaf page
– Use alternative 1:

Actual data record (with
key value k)

Always better than external sorting!

Unclustered B+ Tree Used for Sorting

• Use alternative (2) for
data entries <k, rid of
matching data record>

• Each data entry
contains rid of a data
record. In general, one
I/O per data record!

External Sorting vs. Unclustered Index

p: # of records per page
B=1,000 and block size=32 for sorting
p=100 is the more realistic value.

Sorting Summary

• External sorting is important
• External merge sort minimizes disk I/O cost:

– Pass 0: Produces sorted runs of size B (# buffer pages)
– Later passes: merge runs.

• Clustered B+ tree is good for sorting
• Unclustered B+ tree is usually very bad

Reading and Next Class

• Hashing and Sorting: Ch 11, Ch 13
• Next: Query Processing: Ch 12, Ch 14

