
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

SQL II

Today’s Topics

• SQL Statements (Continue)

SQL SELECT Statement (Second Part)

• Queries with aggregate functions
• Queries with GROUP BY/HAVING
• Queries with ORDER BY

3

Aggregates

• AVG, COUNT, SUM, VARIANCE, MIN/MAX, and
STDEV
SELECT [DISTINCT] AVG(S.gpa)

FROM Students S
WHERE S.dept = 'CS'

• Before producing output, compute a summary (a.k.a.
an aggregate) of some arithmetic expression

• Produces one row of output
– with one column in this case

Queries with Aggregate Functions

SUPNR PRODNR PURCHASE_PRICE DELIV_PERIOD

…

21 0178 NULL NULL

37 0178 16.99 4

68 0178 17.99 5

69 0178 16.99 NULL

94 0178 18.00 6

…

SUPPLIES

Queries with Aggregate Functions
Q12: SELECT COUNT(*)

FROM SUPPLIES
WHERE PRODNR = '0178'

Q13: SELECT COUNT(PURCHASE_PRICE)
FROM SUPPLIES
WHERE PRODNR = '0178'

Q14: SELECT COUNT(DISTINCT PURCHASE_PRICE)
FROM SUPPLIES
WHERE PRODNR = '0178'

5

3

4

Group By

SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM Students S
GROUP BY S.dept

• Partition table into groups with same GROUP BY column values
– Can group by a list of columns

• Produce an aggregate result per group
– Cardinality of output = # of distinct group values

• Always follows the WHERE Clause
• Always precedes the ORDER BY
• Note: can put grouping columns in SELECT list

Queries with Aggregate Functions
Q15: SELECT PRODNR, SUM(PURCHASE_PRICE) AS

SUM_PURCHASE_PRICE
FROM SUPPLIES
WHERE PRODNR = '0178'
GROUP BY PRODNR;

8

prodnr sum_purchase_price

0178 69.97

Queries with Aggregate Functions
Q16: SELECT SUM(PURCHASE_PRICE) AS TOTAL_ORDERS

FROM SUPPLIES;

9

Q17: SELECT PRODNR, AVG(PURCHASE_PRICE) AS
WEIGHTED_AVG_PRICE FROM SUPPLIES
WHERE PRODNR = '0178' GROUP BY PRODNR

SUPNR PRODNR PURCHASE_PRICE DELIV_PERIOD

…

21 0178 NULL NULL

37 0178 16.99 4

68 0178 17.99 5

69 0178 16.99 NULL

94 0178 18.00 6

0178, (16.99 + 17.99 + 16.99
+ 18.00) / 4 = 17.4925

SUPPLIES

Queries with Aggregate Functions
Q18: SELECT PRODNR, AVG(DISTINCT

PURCHASE_PRICE)AS UNWEIGHTED_AVG_PRICE
FROM SUPPLIES WHERE PRODNR = '0178'
GROUP BY PRODNR

10

SUPNR PRODNR PURCHASE_PRICE DELIV_PERIOD

…

21 0178 NULL NULL

37 0178 16.99 4

68 0178 17.99 5

69 0178 16.99 NULL

94 0178 18.00 6

…

0178, (16.99 + 17.99 + 18.00) / 3 = 17.66

Queries with Aggregate Functions

• Q19: SELECT PRODNR, VARIANCE(PURCHASE_PRICE)
AS PRICE_VARIANCE FROM SUPPLIES
WHERE PRODNR = '0178' GROUP BY PRODNR

11

prodnr price_variance
0178 0.336691666666563

Queries with Aggregate Functions

Q20: SELECT PRODNR, MIN(PURCHASE_PRICE) AS LOWEST_PRICE,
MAX(PURCHASE_PRICE) AS HIGHEST_PRICE
FROM SUPPLIES
WHERE PRODNR = '0178'
GROUP BY PRODNR

12

PRODNR LOWEST_PRICE HIGHEST_PRICE

0178 16.99 18.00

Order By

• SELECT S.name, S.gpa, S.age*2 AS a2
FROM Students S
WHERE S.dept = 'CS'
ORDER BY S.gpa, S.name, a2;

• ORDER BY clause specifies output to be sorted
– Lexicographic ordering

• Obviously must refer to columns in the output
– Note the AS clause for naming output columns!

Order By and ASC, DESC

• SELECT S.name, S.gpa, S.age*2 AS a2
FROM Students S
WHERE S.dept = 'CS'
ORDER BY S.gpa DESC, S.name ASC, a2;

• Ascending order by default, but can be overridden
– DESC flag for descending, ASC for ascending

• Can mix and match, lexicographically

Queries with ORDER BY
Q21: SELECT name, type, cost

FROM basic_cards
ORDER BY name DESC, cost ASC limit 5;

15

name type cost
Weasel Tunneler MINION 1

Venture Co. Mercenary MINION 5
Vaelastrasz the Corrupt HERO None

Trogg Hate Minions! HERO_POWER 0
Tank Up! HERO_POWER 2

Queries with ORDER BY
Q22: SELECT PRODNR, SUPNR, PURCHASE_PRICE

FROM SUPPLIES
WHERE PRODNR = '0178'
ORDER BY PURCHASE_PRICE DESC

16

prodnr supnr purchase_price
0178 21 None
0178 94 18.0
0178 68 17.99
0178 37 16.99
0178 69 16.99

Having

SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM Students S
GROUP BY S.dept
HAVING COUNT(*) > 2

• The HAVING predicate filters groups
• HAVING is applied after grouping and aggregation
– Hence can contain anything that could go in the SELECT list
– I.e. aggs or GROUP BY columns

• HAVING can only be used in aggregate queries
• It’s an optional clause

Queries with GROUP BY/HAVING
Q23: SELECT type, count(*) as quantity

FROM basic_cards
GROUP BY type
HAVING COUNT(*) >= 3

18

type quantity
ENCHANTMENT 4

MINION 12
SPELL 7
HERO 3

HERO_POWER 4

Queries with GROUP BY/HAVING
Q22: SELECT player_class, sum(cost) as total

FROM basic_cards
GROUP BY player_class
HAVING sum(cost) >= 5

19

player_class total
NEUTRAL 52

WARLOCK 8
DRUID 5

PALADIN 5

LIMIT

• SELECT S.name, S.gpa, S.age*2 AS a2
FROM Students S
WHERE S.dept = 'CS'
ORDER BY S.gpa DESC, S.name ASC, a2;
LIMIT 3 ;

• Only produces the first <integer> output rows
• Typically used with ORDER BY

– Otherwise the output is non-deterministic
– Not a “pure” declarative construct in that case – output set

depends on algorithm for query processing

Put it All Together

• SELECT S.dept, AVG(S.gpa), COUNT(*)
FROM Students S
WHERE S.gender = 'F'
GROUP BY S.dept
HAVING COUNT(*) >= 2
ORDER BY S.dept DESC;

DISTINCT Aggregates

1. SELECT COUNT(DISTINCT S.name)
FROM Students S
WHERE S.dept = 'CS’;

2. SELECT DISTINCT COUNT(S.name)
FROM Students S
WHERE S.dept = 'CS';

Let’s Do Labs

• https://github.com/VTCourses/CS4604_Labs
• Lab2: 2.select

https://github.com/VTCourses/CS4604_Labs
https://github.com/VTCourses/CS4604_Labs/tree/master/2.select

SQL SELECT Statement

• Join queries
• Nested queries
• Correlated queries
• Queries with ALL/ANY
• Queries with EXISTS
• Queries with subqueries in FROM/WHERE
• Queries with set operations

Renaming – Self-join

• Find Tom’s grandparent(s)

Select gp.p-id
from PC as gp, PC
where gp.c-id = PC.p-id
and PC.c-id = “Tom”

Arithmetic Expressions

• SELECT S.age, S.age-5 AS age1, 2*S.age AS age2
FROM Sailors AS S
WHERE S.sname = 'Popeye’

• SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors AS S1, Sailors AS S2
WHERE 2*S1.rating = S2.rating - 1

SQL Calculator!

SELECT
log(1000) as three,
exp(ln(2)) as two,
cos(0) as one,
ln(2*3) = ln(2) + ln(3) as sanity;

Join Queries

• Inner joins
• Outer joins

SELECT [DISTINCT] <column expression list>
FROM <table1 [AS t1], ... , tableN [AS tn]>
[WHERE <predicate>]
[GROUP BY <column list>[HAVING <predicate>]]
[ORDER BY <column list>];

28

Inner Joins
SUPPLIER(SUPNR, SUPNAME, ..., SUPSTATUS)
SUPPLIES(SUPNR, PRODNR, PURCHASE_PRICE, ...)

29

SUPNR SUPNAME SUPADDRESS SUPCITY SUPSTATUS

32 Best wines 90

68 The Wine Depot 10

84 Wine Trade Logistics 92

: : :

SUPNR PRODNR PURCHASE_PRICE DELIV_PERIOD

32 0474 40.00 1

32 0154 21.00 4

84 0494 15.99 2

: : :

Joins
Q25: SELECT
R.SUPNR, R.SUPNAME,
R.SUPSTATUS,
S.SUPNR, S.PRODNR,
S.PURCHASE_PRICE

FROM SUPPLIER R,
SUPPLIES S

30

supnr supname supstatus supnr_1 prodnr purchase_price
21 Deliwines 20 21 0178 None
32 Best Wines 90 21 0178 None
37 Ad Fundum 95 21 0178 None

52 Spirits & co. None 21 0178 None

68 The Wine
Depot 10 21 0178 None

69 Vinos del
Mundo 92 21 0178 None

94 The Wine
Crate 75 21 0178 None

84 Wine Trade
Logistics 92 21 0178 None

21 Deliwines 20 37 0178 16.99
32 Best Wines 90 37 0178 16.99

Inner Joins
Q26: SELECT

R.SUPNR, R.SUPNAME,
R.SUPSTATUS,

S.SUPNR, S.PRODNR,
S.PURCHASE_PRICE

FROM SUPPLIER R,
SUPPLIES S

WHERE R.SUPNR = S.SUPNR

31

supnr supname supstatus supnr_1 prodnr purchase
_price

21 Deliwines 20 21 0178 None

37 Ad Fundum 95 37 0178 16.99

68 The Wine
Depot 10 68 0178 17.99

69 Vinos del
Mundo 92 69 0178 16.99

94 The Wine
Crate 75 94 0178 18.0

Inner Joins
Q27: SELECT R.SUPNR, R.SUPNAME, R.SUPSTATUS,

S.PRODNR, S.PURCHASE_PRICE
FROM SUPPLIER AS R INNER JOIN SUPPLIES AS S
ON (R.SUPNR = S.SUPNR)

32

Inner Joins
Q28: SELECT R.SUPNR, R.SUPNAME,
PO.PONR, PO.PODATE,

P.PRODNR,P.PRODNAME,
POL.QUANTITY

FROM SUPPLIER R,
PURCHASE_ORDER PO, PO_LINE

POL, PRODUCT P

WHERE (R.SUPNR = PO.SUPNR)
AND (PO.PONR = POL.PONR)
AND (POL.PRODNR = P.PRODNR)

33

R.SUPNR R.SUPNAME PO.PONR PO.PODATEP.PRODNRP.PRODNAME POL.QUANTIT

Y

37 Ad Fundum 1511 2015-03-24 0212
Billecart-Salmon, Brut

Réserve, 2014
2

37 Ad Fundum 1511 2015-03-24 0345
Vascosassetti, Brunello di

Montalcino, 2004
4

37 Ad Fundum 1511 2015-03-24 0783
Clos D'Opleeuw,

Chardonnay, 2012
1

37 Ad Fundum 1511 2015-03-24 0856

Domaine Chandon de

Briailles, Savigny-Les-

Beaune, 2006

9

94
The Wine

Crate
1512 2015-04-10 0178

Meerdael, Methode

Traditionnelle Chardonnay,

2014

3

…

Inner Joins

Q29: SELECT R1.SUPNAME, R2.SUPNAME,
R1.SUPCITY
FROM SUPPLIER R1, SUPPLIER R2
WHERE R1.SUPCITY = R2.SUPCITY
AND (R1.SUPNR < R2.SUPNR)

34

supname supname_1 supcity
Best Wines The Wine Depot San Francisco
Ad Fundum The Wine Crate Chicago

Inner Joins
Q30: SELECT R.SUPNAME

FROM SUPPLIER R, SUPPLIES S
WHERE R.SUPNR = S.SUPNR
AND S.PRODNR = '0899'

35

Q31: SELECT DISTINCT R.SUPNAME
FROM SUPPLIER R, SUPPLIES S, PRODUCT P
WHERE S.SUPNR = R.SUPNR
AND S.PRODNR = P.PRODNR
AND P.PRODTYPE = 'ROSE'

Inner Joins
Q32: SELECT P.PRODNR, P.PRODNAME, SUM(POL.QUANTITY)

FROM PRODUCT P, PO_LINE POL
WHERE P.PRODNR = POL.PRODNR
GROUP BY P.PRODNR

36

PRODNR PRODNAME SUM(POL.QUANTITY)

0178 Meerdael, Methode Traditionnelle Chardonnay, 2014 9

0185 Chateau Petrus, 1975 2

0212 Billecart-Salmon, Brut Réserve, 2014 23

0295 Chateau Pape Clement, Pessac-Léognan, 2001 9

0306 Chateau Coupe Roses, Granaxa, 2011 11

…

Join Variants

SELECT <column expression list>
FROM table_name
[INNER | NATURAL
| {LEFT |RIGHT | FULL } {OUTER}] JOIN table_name
ON <qualification_list>

WHERE …

• INNER is default
• Inner join what we’ve learned so far

– Same thing, just with different syntax.

Inner/Natural Joins
SELECT s.sid, s.sname, r.bid
FROM Sailors s, Reserves r
WHERE s.sid = r.sid
AND s.age > 20;

SELECT s.sid, s.sname, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid
WHERE s.age > 20;

SELECT s.sid, s.sname, r.bid
FROM Sailors s NATURAL JOIN Reserves r
WHERE s.age > 20;

• ALL 3 ARE EQUIVALENT!
• “NATURAL” means equi-join for pairs of attributes with the same name

SailorsReserves

Outer Join
• Outer join can be used when we want to keep all the

tuples of one or both tables in the result of the JOIN,
regardless of whether or not they have matching tuples in
the other table

• Left outer join
• Right outer join
• Full outer join

Left Outer Joins

Q33: SELECT s.sid, s.sname, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid;

• Returns all matched rows, and preserves all unmatched rows from the table
on the left of the join clause
• Use nulls in fields of non-matching tuples

• Returns all sailors & bid for boat in any of their reservations

• Note: no match for s.sid? r.bid IS NULL!

Right Outer Joins

Q34:SELECT r.sid, b.bid, b.bname
FROM Reserves r RIGHT OUTER JOIN Boats b
ON r.bid = b.bid

41

• Returns all matched rows, and preserves all unmatched rows from
the table on the right of the join clause
• Use nulls in fields of non-matching tuples

• Returns all boats and sid for any sailor associated with
the reservation.

• Note: no match for b.bid? r.sid IS NULL!

Full Outer Join
• Returns all (matched or unmatched) rows from the tables on

both sides of the join clause

SELECT r.sid, b.bid, b.bname
FROM Reserves r FULL OUTER JOIN Boats b
ON r.bid = b.bid

• Returns all boats & all information on reservations
• No match for r.bid?

– b.bid IS NULL AND b.bname IS NULL!
• No match for b.bid?

– r.sid IS NULL!

Nested Queries

43

Nested Queries

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=102)

44

Sailors ReservesQ34: Names of sailors who’ve
reserved boat #102:

Queries with EXISTS

• The EXISTS function checks whether the result
of a correlated nested query is empty or not

• EXISTS returns TRUE if there is at least one
tuple in the result of the nested query, or
otherwise returns FALSE

• Vice versa, the NOT EXISTS function returns
TRUE if there are no tuples in the result of the
nested query, or otherwise returns FALSE

45

Nested Queries: Exists with Correlation

Q35: Names of sailors who’ve reserved boat #102

46

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=102 AND
S.sid=R.sid)

• Correlated subquery is recomputed for each Sailors tuple.

Nested Queries: Not Exists

Q35: Names of sailors who have not reserved boat #102

47

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=102 AND
S.sid=R.sid)

• Correlated subquery is recomputed for each Sailors tuple.

Nested Queries

Q36: SELECT SUPNAME
FROM SUPPLIER
WHERE SUPNR IN

(SELECT SUPNR
FROM SUPPLIES
WHERE PRODNR ='0178')

48

Q37: SELECT SUPNAME
FROM SUPPLIER
WHERE SUPNR IN

(SELECT SUPNR
FROM SUPPLIES
WHERE PRODNR IN

(SELECT PRODNR
FROM PRODUCT
WHERE PRODTYPE = 'ROSE'))

Nested Queries
Q38: SELECT PRODNAME

FROM PRODUCT
WHERE PRODNR IN
(SELECT PRODNR
FROM SUPPLIES
WHERE SUPNR = '32')
AND PRODNR IN
(SELECT PRODNR
FROM SUPPLIES
WHERE SUPNR = '84')

49

Correlated Queries
• Whenever a condition in the WHERE clause of a

nested query references some column of a table
declared in the outer query, the two queries are said
to be correlated

• The nested query is then evaluated once for each
tuple (or combination of tuples) in the outer query

50

Examples: Correlated Queries
Q39: SELECT P.PRODNR
FROM PRODUCT P
WHERE 1 <
(SELECT COUNT(*)
FROM PO_LINE POL
WHERE P.PRODNR =
POL.PRODNR)

51

Q40: SELECT R.SUPNR, R.SUPNAME,
P.PRODNR, P.PRODNAME,

S1.PURCHASE_PRICE,
S1.DELIV_PERIOD

FROM SUPPLIER R, SUPPLIES S1,
PRODUCT P

WHERE R.SUPNR = S1.SUPNR
AND S1.PRODNR = P.PRODNR
AND S1.PURCHASE_PRICE <

(SELECT AVG(PURCHASE_PRICE)
FROM SUPPLIES S2
WHERE P.PRODNR =

S2.PRODNR)

Q41: SELECT P1.PRODNR
FROM PRODUCT P1
WHERE 3 >

(SELECT COUNT(*)
FROM PRODUCT P2
WHERE P1.PRODNR <

P2.PRODNR)

Reading and Next Class

• SQL II: Ch 5
• Next: SQL III: Ch5

