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Entity/Relationship Models II



Today’s Topics

• Design ER models
• ER to Relational



Weak Entities
• A strong en)ty set is an en)ty set that has a key a,ribute type
• A weak en)ty set is an en)ty set whose key contains a,ributes from 

one or more other en)ty sets. 
– Owner en'ty set and weak en'ty set must par'cipate in a one-to-many

rela'onship set (one owner, many weak en''es).
– Weak en'ty set must have total par'cipa'on in this iden'fying 

rela'onship set.
• Weak en))es have a “par)al key” (dashed underline) 
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Weak Entity Set
• Weak entity set is always existentially dependent from owner entity 

set (not vice versa!)
• Representation: a rectangle with a double border in the E/R diagram
• Supporting relationship: diamond with a double border
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Many – to - One



Finding the Key for a Weak Entity Set 

• Room is a weak entity set if its key consists of
– Zero or more of its own attributes
– Key attributes from supporting relationships for Room 

Many – to - One



Supporting relationship
• A relationship R from a weak entity set Room to Hotel is supporting if 

– R is a binary, many-to-one relationship from Room to Hotel 
– R has referential integrity from Hotel to Room 

• How does Hotel help Room? 
– Hotel supplies its key attributes to define Room's key 
– If Hotel is itself a weak entity set, some of its key attributes come from entity sets to 

which Hotel is connected by supporting relationships 

Many – to - One



Ternary Relationship Types Example

• Assume that we have a situation where suppliers can supply products 
for projects.  

• A supplier can supply a particular product for multiple projects.  
• A product for a particular project can be supplied by multiple 

suppliers.  
• A project can have a particular supplier supply multiple products.  
• The model must also include the quantity and due date for supplying a 

particular product to a particular project by a particular supplier.
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Binary Relationship Types
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Binary Relationship Types
• Say we have two projects: project 1 uses a pencil and a pen, and project 2 uses a 

pen
• Supplier Peters supplies the pencil for project 1 and the pen for project 2 
• Supplier Johnson supplies the pen for project 1
• From the binary relationship types, it is not clear who supplies the pen for project 1!



Ternary Relationship Types



Aggregation
• Allows relationships to have 

relationships
• Entity types that are related 

by a particular relationship 
type can be combined or 
aggregated into a higher-
level aggregate entity type

• Aggregation is especially 
useful when the aggregate 
entity type has its own 
attribute types and/or 
relationship types
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Limitations of the ER model

• ER model presents a temporary snapshot and cannot model temporal
constraints
– Examples: a project needs to be assigned to a department after one month, a 

purchase order must be assigned to a supplier after two weeks, etc.

• ER model cannot guarantee the consistency across multiple relationship 
types
– Examples: an employee should work in the department that he/she manages, 

suppliers can only be assigned to purchase orders for products they can supply
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Limitations of the ER model
• Domains are not included in the ER model

– Examples: hours should be positive; prodtype must be red, white 
or sparkling, supstatus is an integer between 0 and 100

• Functions are not included in the ER model
– Examples: calculate average number of projects an employee 

works on; determine which supplier charges the maximum price 
for a product
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Examples of the ER Diagram (Model)
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Examples of the ER Diagram (Model)
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Conceptual Design Using the ER Model

• ER modeling can get tricky!
• Design choices:

– Entity or attribute?
– Entity or relationship?
– Relationships: Binary or ternary? Aggregation?

• ER Model goals and limitations:
– Lots of semantics can (and should) be captured.
– Some constraints cannot be captured in ER.

• We will refine things in our logical (relational) design



Principle 1: Avoiding Redundancy

• Redundancy occurs when we say the same thing 
in two different ways

• Redundancy wastes space and causes 
inconsistency
– The two instances of the same fact may become 

inconsistent if we change one & forget to change the 
other



Example: Avoiding Redundancy 



Principle 2: Entity vs. Attribute

• “Address”: 
– attribute of Employees? 
– Entity of its own?

• It depends!  Semantics and usage.
– Several addresses per employee? 

• must be an entity
• atomic attribute types (no set-valued attributes!)

– Care about structure? (city, street, etc.) 
• must be an entity! (or at least multiple attributes) 
• atomic attribute types (no tuple-valued attributes!)



Entity Sets Versus Attributes 

• Rule: An entity set should satisfy at least one of 
the following conditions: 
– It is more than the name of something; 

• i.e., it has at least one non-key attribute. 

Or
– It is the “many” in a many-one or many-many 

relationship. 



Example: Entity vs. Attribute

• If we had no manufacturer address information 



Summary of Conceptual Design
• Conceptual design follows requirements analysis 

– Yields a high-level description of data to be stored 
• ER model popular for conceptual design

– Constructs are expressive, close to the way we think about applications.
– Note: There are many variations on ER model

• Both graphically and conceptually

• Basic constructs: entities, relationships, and attributes (of 
entities and relationships).

• Some additional constructs: weak entities and aggregation.



Summary of ER (Cont.)

• Basic integrity constraints
– key constraints
– participation constraints

• Some foreign key constraints are also implicit in the definition of a 
relationship set.

• Many other constraints (notably, functional dependencies) cannot be 
expressed.

• Constraints play an important role in determining the best database design for 
an enterprise.



Summary of ER (Cont.)
• ER design is subjective.  Many ways to model a given 

scenario!

• Analyzing alternatives can be tricky! Common choices 
include:
– Entity vs. attribute, entity vs. relationship, binary or n-ary 

relationship, whether or not to use aggregation

• For good DB design: resulting relational schema should be 
analyzed and refined further. 
– Functional Dependency information 

+ normalization coming in subsequent lecture.



Guidelines 

• Be faithful to the specification of the application 
• Avoid redundancy
• Keep the entities and relationship simple
• Select the right relationships
• Select the right type of element



Be Faithful to the Specification 

• Do not use meaningless or unnecessary 
attributes 

• Define the multiplicity of a relationship 
appropriately 
– What is the multiplicity of the relationship Take 

between Students and Courses? 
– What is the multiplicity of the relationship Teach 

between Professors and Courses? 



Select the Right Relationships 
• Do not add unnecessary relationships
• It may be possible to deduce one relationship from another
• Do we need the relationship Instruct between Professors 

and Students? 



Select the Right Relationships 

• Do we need the relationships Take and Teach? 



Select the right kind of element 
• Attribute or Entity or Relationship
• Can we make Professor an attribute of Courses and remove the 

relationship Teach? 



Select the right kind of element 
• Attribute or Entity or Relationship
• What about this? 



Select the right kind of element 
• Attribute or Entity or Relationship
• What about this? 



Converting an Entity Set into an Attribute 

• If an entity set E satisfies the following properties: 
– All relationships involving E have arrows entering E 
– The attributes of E collectively identify an entity (i.e., no 

attribute depends on another) 
– No relationship involves E more than once

• Then we can replace E as follows: 
– If there is a many-one relationship R from an entity set F to 

E, remove R and make the attributes of E be attributes of F 
– If there is a multiway relationship R with an arrow to E, make 

E’s attributes be new attributes of R and remove the arrow 
from R to E 



Recap: Types of Constraints 
• Keys are attributes or sets of attributes that uniquely identify an 

entity within its entity set
• Single-value constraints require that a value be unique in 

certain contexts
• Referential integrity constraints require that a value referred to 

actually exists in the database
• Degree constraints specify what set of values an attribute can 

take
• General constraints are arbitrary constraints that should hold in 

the  database
• Constraints are part of the schema of a database



Single Value Constraints 

• There is at most one value in a given context 
• Each attribute of an entity set has a single value 

– If the value is missing, we can invent a “null" value
– E/R models cannot represent the requirement that an 

attribute cannot have a null value 
• A many-one relationship implies a single value 

constraint 



Referential Integrity Constraint 

• Asserts that exactly one value exists in a given context 
– Usually used in the context of relationships

• Example: Many-one Advises relationship between Students and 
Professors 
– Many-one requirement says that no student may have more than one 

advising professor 
– Referential integrity constraint says that each student must have exactly 

one advising professor and that professor must be present in the 
database 

• If R is a (many-to-one or one-to-one) relationship from E to F, we 
use a rounded arrowhead pointing to F to indicate that we 
require that the entity in F related by R to an entity in E must 
exist 



Example: Referential Integrity Constraint 
• Each department has at most one chairperson who is its head 

(there are times when a department may not have a chairperson) 
• Each chairperson can be the head of at most one department and 

this department must exist in the database 



Enforcing Referential Integrity Constraints 
• We forbid the deletion of a referenced entity (e.g., a 

professor) until the professor advises no students 
• We require that if we delete a referenced entity, we delete all 

entities that reference it 
• When we insert a (student, professor) pair into the Advises 

relationship, the professor must exist in the Professors entity 
set 



Degree Constraints 

• Indicates limits on the # of entities that can be 
connected 

• For example,

• Limits number of stars in each move to <=10 



Degree Constraints 
• Indicates limits on the # of entities that can be 

connected 



Steps in Database Design
• Requirements Analysis

– user needs; what must database do?
• Conceptual Design

– high level description (often done w/ER model)
– Object-Relational Mappings (ORMs: Hibernate, Rails, Django, etc.) 

encourage you to program here
• Logical Design

– translate ER into DBMS data model
– ORMs often require you to help here too

• Schema Refinement 
– consistency, normalization

• Physical Design - indexes, disk layout
• Security Design - who accesses what, and how

We are here 

Just finished



Recap: Relational Model 

• Built around a single concept for modelling data: 
the relation or table

• Supports high-level programming language 
(SQL)

• Has an elegant mathematical design theory 
• Most current DBMS are relational 



Recap: The Relation 
• A relation is a two-dimensional table:

– Relation ⬄ Table
– Attribute ⬄ Column name
– Tuple ⬄ Row (not the header row)
– Database ⬄ Collection of relations

CoursesTaken



Recap: The Schema 

• The schema of a relation is the name of the 
relation followed by a parenthesized list of 
attributes 
– CoursesTaken(Student, Course, Grade) 

• A design in a relational model consists of a set of 
schemas. 
– Such a set of schemas is called a relational database 

schema 



Converting ER Diagram to Relational Design

• Entity Set à Relation
– Attribute of Entity Set à Attribute of a Relation 

• Relationship à relation whose attributes are
– Attribute of the relationship itself
– Key attributes of the connected entity sets 

• Several special cases: 
– Weak entity sets. 
– Combining relations (especially for many-one relationships) 
– ISA relationships and subclasses



Subclasses in ER Diagrams 



Example: ER Diagram



Schemas for Entity Sets 

• For each entity set, create a relation with the 
same name and with the same set of attributes 

• Students (Name, Address) 
• Professors (Name, Office, Age) 
• Departments (Name) 



Mapping Entity Types

EMPLOYEE(SSN, address, first name, last name)
PROJECT(PNR, pname, pduration)
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Mapping Multi-Valued Attribute Types
• For each multi-valued attribute type, we create a new 

relation R
• We put the multi-valued attribute type in R together 

with a foreign key referring to the primary key of the 
original relation  

• Multi-valued composite attribute types are again 
decomposed into their components  

• The primary key can then be set based upon the 
assumptions  

49



Mapping Multi-Valued Attribute Types

EMPLOYEE(SSN, ename, address)
EMP-PHONE(PhoneNr, SSN)
- SSN foreign key refers to SSN in EMPLOYEE, NULL NOT ALLOWED
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Mapping Multi-Valued Attribute Types
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Composite Attributes Types
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Schemas for Relationships 
• For each relationship, create a relation with the same name 

whose attributes are 
– Attributes of the relationship itself
– Key attributes of the connected entity sets (even if they are weak)

• Take (StudentName, Address, Number, DepartmentName)
• Teach (ProfessorName, Office, Number, DepartmentName) 
• Evaluation (StudentName, Address, ProfessorName, Office, 

Number, DepartmentName, Grade) 



Example: ER Diagram



Combining Relations 
• Consider many-one Teach relationship from Courses to Professors 
• Schemas are:

– Courses(Number, DepartmentName, CourseName, Classroom, Enrollment) 
– Professors(Name, Office, Age) 
– Teach(Number, DepartmentName, ProfessorName, Office)

• The key for Courses uniquely determines all attributes of Teach 
• We can combine the relations for Courses and Teach into a single 

relation whose attributes are 
– All the attributes for Courses
– Any attributes of Teach
– The key attributes of Professors 



Rules for Combining Relations 
• We can combine into one new relation Q 

– The relation for an entity set E 
– all many-to-one relationships R1, R2, ..., Rk from E to 

other entity sets E1, E2, ..., Ek respectively 
• The attributes of Q are

– All the attributes of E
– Any attributes of R1, R2, ..., Rk
– The key attributes of E1, E2, ..., Ek 



Roles in Relationships 

• If an entity set E appears k > 1 times in a relationship R (in 
different roles), the key attributes for E appear k times in the 
relation for R, appropriately renamed 

• PreReq (RequirerNumber, RequirerDeptName, 
RequirementNumber, RequirementDeptName) 



Supporting Relationships 
• Departments(Name) 
• Courses(Number, DepartmentName, 

CourseName, Classroom, Enrollment) 
• Offer(Name, Number, DepartmentName) 

– But Name and DepartmentName are 
identical, so the schema for Offer is 
Offer(Number, DepartmentName) 

– The schema for Offer is a subset of the 
schema for the weak entity set, so we can 
dispense with the relation for Offer 



Rules for Supporting Relationships
• If W is a weak entity set, the 

relation for W has a schema 
whose attributes are 
– all attributes of W
– all attributes of supporting 

relationships for W
– for each supporting relationship 

for W to an entity set E
– the key attributes of E 

• There is no relation for any 
supporting relationship for W 



Mapping Relationship Types

• Mapping a binary 1:1 relationship type
• Mapping a binary 1:N relationship type
• Mapping a binary N:M relationship type
• Mapping unary relationship types
• Mapping n-ary relationship types
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Mapping a Binary 1:1 Relationship Type

• Create two relations: one for each entity type participating 
in the relationship type 

• The connection can be made by including a foreign key in 
one of the relations to the primary key of the other 

• In case of existence dependency (participation constraint), 
put the foreign key in the existence-dependent relation and 
declare it as NOT NULL  

• The attribute types of the 1:1 relationship type can then be 
added to the relation with the foreign key
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Mapping a Binary 1:1 Relationship Type
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Mapping a Binary 1:1 Relationship Type
EMPLOYEE(SSN, ename, address)
DEPARTMENT(DNR, dname, dlocation, SSN)
- SSN foreign key refers to SSN in EMPLOYEE, NULL NOT ALLOWED
- SSN is an alternate key
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Mapping a Binary 1:N Relationship Type
• Binary 1:N relationship types can be mapped by including a 

foreign key in the relation corresponding to the participating 
entity type at the N-side of the relationship type 

• The foreign key refers to the primary key of the relation 
corresponding to the entity type at the 1-side of the 
relationship type 

• Depending upon the minimum cardinality, the foreign key can 
be declared as NOT NULL or NULL ALLOWED  

• The attribute types of the 1:N relationship type can be added 
to the relation corresponding to the participating entity type
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Mapping a Binary 1:N Relationship Type

EMPLOYEE(SSN, ename, address, 
starting date, DNR)
- DNR foreign key refers to DNR in 
DEPARTMENT, NULL NOT ALLOWED

DEPARTMENT(DNR, dname, dlocation)
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Mapping a Binary 1:N Relationship Type
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Mapping a Binary N:M Relationship Type

• M:N relationship types are mapped by introducing a new 
relation R

• The primary key of R is a combination of foreign keys referring 
to the primary keys of the relations corresponding to the 
participating entity types

• The attribute types of the M:N relationship type can also be 
added to R
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Mapping a Binary N:M Relationship Type

EMPLOYEE(SSN, ename, address)
PROJECT(PNR, pname, pduration)
WORKS_ON(SSN, PNR, hours)
- SSN foreign key refers to SSN in EMPLOYEE, NULL NOT ALLOWED
- PNR foreign key refers to PNR in PROJECT, NULL NOT ALLOWED
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Mapping a Binary N:M Relationship Type
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Mapping Unary Relationship Types

• A recursive 1:1 or 1:N relationship type can be 
implemented by adding a foreign key referring to 
the primary key of the same relation

• For an N:M recursive relationship type, a new 
relation R needs to be created with two NOT 
NULL foreign keys referring to the original relation
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Mapping Unary Relationship Types

EMPLOYEE(SSN, ename, address, supervisor)
- supervisor foreign key refers to SSN in EMPLOYEE, NULL ALLOWED
- supervisor is an alternate key
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Mapping Unary Relationship Types
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Mapping Unary Relationship Types

EMPLOYEE(SSN, ename, address)
SUPERVISION(Supervisor, Supervisee)

73

- Supervisor foreign key 
refers to SSN in EMPLOYEE, 
NULL NOT ALLOWED
- Supervisee foreign key 
refers to SSN in EMPLOYEE, 
NULL NOT ALLOWED



Mapping Unary Relationship Types
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Mapping n-ary Relationship Types
• To map an n-ary relationship type, we first create relations for each 

participating entity type  
• We then also define one additional relation R to represent the n-ary 

relationship type and add foreign keys referring to the primary keys 
of each of the relations corresponding to the participating entity types

• The primary key of R is the combination of all foreign keys which are 
all NOT NULL  

• Any attribute type of the n-ary relationship can also be added to R
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Mapping n-ary Relationship Types

TOURIST(TNR, …)
TRAV_AGENCY(ANR, …)
HOTEL(HNR, …)
BOOKING(TNR, ANR, HNR, price)

- TNR foreign key refers to TNR in Tourist, NULL NOT ALLOWED
...
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Mapping n-ary Relationship Types

INSTRUCTOR(INR, …)
COURSE(CNR, …)
SEMESTER(SEM-YEAR, …)
OFFERS(INR,CNR,SEM-YEAR)
- INR foreign key refers to ...
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Mapping n-ary Relationship Types
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Mapping Weak Entity Sets

• A weak entity set should be mapped into a relation R 
with all its corresponding attribute types 

• A foreign key must be added referring to the primary key 
of the relation corresponding to the owner entity type

• Because of the existence dependency, the foreign key is 
declared as NOT NULL 

• The primary key of R is then the combination of the 
partial key and the foreign key
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Mapping Weak Entity Sets

Hotel (HNR, Hname)
Room (RNR, HNR, beds)
- HNR foreign key refers to HNR in Hotel, NULL NOT ALLOWED
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Mapping Weak Entity Sets
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Putting It All Together
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ER model Relational model

Entity set Relation

Weak entity set Foreign key

1:1 or 1:N relationship type Foreign key

M:N relationship type New relation with two foreign keys

n-ary relationship type New relation with n foreign keys

Simple attribute type Attribute type

Composite attribute type Component attribute type

Multi-valued attribute type Relation and foreign key

Key attribute type Primary or alternative key



Putting it All Together
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Putting It All Together
• EMPLOYEE(SSN, ename, streetaddress, city, sex, 

dateofbirth, SUPERVISOR, DNR)
– SUPERVISOR foreign key refers to SSN in EMPLOYEE, NULL ALLOWED
– DNR foreign key refers to DNR in DEPARTMENT, NOT NULL

• DEPARTMENT (DNR, dname, dlocation, MGNR)
– MGNR: foreign key refers to SSN in EMPLOYEE, NOT NULL
– MGNR is an alternate key

• PROJECT (PNR, pname, pduration, DNR)
– DNR: foreign key refers to DNR in DEPARTMENT, NOT NULL

• WORKS-ON (SSN, PNR, HOURS)
– SSN foreign key refers to SSN in EMPLOYEE, NOT NULL
– PNR foreign key refers to PNR in PROJECT, NOT NULL
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Reading and Next Class

• Entity/Relationship Models II
– Ch 2, 3

• Next: SQL I: Ch 5


