
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Entity/Relationship Models II

Today’s Topics

• Design ER models
• ER to Relational

Weak Entities
• A strong en)ty set is an en)ty set that has a key a,ribute type
• A weak en)ty set is an en)ty set whose key contains a,ributes from

one or more other en)ty sets.
– Owner en'ty set and weak en'ty set must par'cipate in a one-to-many

rela'onship set (one owner, many weak en''es).
– Weak en'ty set must have total par'cipa'on in this iden'fying

rela'onship set.
• Weak en))es have a “par)al key” (dashed underline)

3

Weak Entity Set
• Weak entity set is always existentially dependent from owner entity

set (not vice versa!)
• Representation: a rectangle with a double border in the E/R diagram
• Supporting relationship: diamond with a double border

4

Many – to - One

Finding the Key for a Weak Entity Set

• Room is a weak entity set if its key consists of
– Zero or more of its own attributes
– Key attributes from supporting relationships for Room

Many – to - One

Supporting relationship
• A relationship R from a weak entity set Room to Hotel is supporting if

– R is a binary, many-to-one relationship from Room to Hotel
– R has referential integrity from Hotel to Room

• How does Hotel help Room?
– Hotel supplies its key attributes to define Room's key
– If Hotel is itself a weak entity set, some of its key attributes come from entity sets to

which Hotel is connected by supporting relationships

Many – to - One

Ternary Relationship Types Example

• Assume that we have a situation where suppliers can supply products
for projects.

• A supplier can supply a particular product for multiple projects.
• A product for a particular project can be supplied by multiple

suppliers.
• A project can have a particular supplier supply multiple products.
• The model must also include the quantity and due date for supplying a

particular product to a particular project by a particular supplier.

7

Binary Relationship Types

8

Binary Relationship Types
• Say we have two projects: project 1 uses a pencil and a pen, and project 2 uses a

pen
• Supplier Peters supplies the pencil for project 1 and the pen for project 2
• Supplier Johnson supplies the pen for project 1
• From the binary relationship types, it is not clear who supplies the pen for project 1!

Ternary Relationship Types

Aggregation
• Allows relationships to have

relationships
• Entity types that are related

by a particular relationship
type can be combined or
aggregated into a higher-
level aggregate entity type

• Aggregation is especially
useful when the aggregate
entity type has its own
attribute types and/or
relationship types

until

Employees

Monitors

lot
name

ssn

budgetdidpid

started_on

pbudget
dname

DepartmentsProjects Sponsors

since

Limitations of the ER model

• ER model presents a temporary snapshot and cannot model temporal
constraints
– Examples: a project needs to be assigned to a department after one month, a

purchase order must be assigned to a supplier after two weeks, etc.

• ER model cannot guarantee the consistency across multiple relationship
types
– Examples: an employee should work in the department that he/she manages,

suppliers can only be assigned to purchase orders for products they can supply

12

Limitations of the ER model
• Domains are not included in the ER model

– Examples: hours should be positive; prodtype must be red, white
or sparkling, supstatus is an integer between 0 and 100

• Functions are not included in the ER model
– Examples: calculate average number of projects an employee

works on; determine which supplier charges the maximum price
for a product

13

Examples of the ER Diagram (Model)

14

Examples of the ER Diagram (Model)

15

Conceptual Design Using the ER Model

• ER modeling can get tricky!
• Design choices:

– Entity or attribute?
– Entity or relationship?
– Relationships: Binary or ternary? Aggregation?

• ER Model goals and limitations:
– Lots of semantics can (and should) be captured.
– Some constraints cannot be captured in ER.

• We will refine things in our logical (relational) design

Principle 1: Avoiding Redundancy

• Redundancy occurs when we say the same thing
in two different ways

• Redundancy wastes space and causes
inconsistency
– The two instances of the same fact may become

inconsistent if we change one & forget to change the
other

Example: Avoiding Redundancy

Principle 2: Entity vs. Attribute

• “Address”:
– attribute of Employees?
– Entity of its own?

• It depends! Semantics and usage.
– Several addresses per employee?

• must be an entity
• atomic attribute types (no set-valued attributes!)

– Care about structure? (city, street, etc.)
• must be an entity! (or at least multiple attributes)
• atomic attribute types (no tuple-valued attributes!)

Entity Sets Versus Attributes

• Rule: An entity set should satisfy at least one of
the following conditions:
– It is more than the name of something;

• i.e., it has at least one non-key attribute.

Or
– It is the “many” in a many-one or many-many

relationship.

Example: Entity vs. Attribute

• If we had no manufacturer address information

Summary of Conceptual Design
• Conceptual design follows requirements analysis

– Yields a high-level description of data to be stored
• ER model popular for conceptual design

– Constructs are expressive, close to the way we think about applications.
– Note: There are many variations on ER model

• Both graphically and conceptually

• Basic constructs: entities, relationships, and attributes (of
entities and relationships).

• Some additional constructs: weak entities and aggregation.

Summary of ER (Cont.)

• Basic integrity constraints
– key constraints
– participation constraints

• Some foreign key constraints are also implicit in the definition of a
relationship set.

• Many other constraints (notably, functional dependencies) cannot be
expressed.

• Constraints play an important role in determining the best database design for
an enterprise.

Summary of ER (Cont.)
• ER design is subjective. Many ways to model a given

scenario!

• Analyzing alternatives can be tricky! Common choices
include:
– Entity vs. attribute, entity vs. relationship, binary or n-ary

relationship, whether or not to use aggregation

• For good DB design: resulting relational schema should be
analyzed and refined further.
– Functional Dependency information

+ normalization coming in subsequent lecture.

Guidelines

• Be faithful to the specification of the application
• Avoid redundancy
• Keep the entities and relationship simple
• Select the right relationships
• Select the right type of element

Be Faithful to the Specification

• Do not use meaningless or unnecessary
attributes

• Define the multiplicity of a relationship
appropriately
– What is the multiplicity of the relationship Take

between Students and Courses?
– What is the multiplicity of the relationship Teach

between Professors and Courses?

Select the Right Relationships
• Do not add unnecessary relationships
• It may be possible to deduce one relationship from another
• Do we need the relationship Instruct between Professors

and Students?

Select the Right Relationships

• Do we need the relationships Take and Teach?

Select the right kind of element
• Attribute or Entity or Relationship
• Can we make Professor an attribute of Courses and remove the

relationship Teach?

Select the right kind of element
• Attribute or Entity or Relationship
• What about this?

Select the right kind of element
• Attribute or Entity or Relationship
• What about this?

Converting an Entity Set into an Attribute

• If an entity set E satisfies the following properties:
– All relationships involving E have arrows entering E
– The attributes of E collectively identify an entity (i.e., no

attribute depends on another)
– No relationship involves E more than once

• Then we can replace E as follows:
– If there is a many-one relationship R from an entity set F to

E, remove R and make the attributes of E be attributes of F
– If there is a multiway relationship R with an arrow to E, make

E’s attributes be new attributes of R and remove the arrow
from R to E

Recap: Types of Constraints
• Keys are attributes or sets of attributes that uniquely identify an

entity within its entity set
• Single-value constraints require that a value be unique in

certain contexts
• Referential integrity constraints require that a value referred to

actually exists in the database
• Degree constraints specify what set of values an attribute can

take
• General constraints are arbitrary constraints that should hold in

the database
• Constraints are part of the schema of a database

Single Value Constraints

• There is at most one value in a given context
• Each attribute of an entity set has a single value

– If the value is missing, we can invent a “null" value
– E/R models cannot represent the requirement that an

attribute cannot have a null value
• A many-one relationship implies a single value

constraint

Referential Integrity Constraint

• Asserts that exactly one value exists in a given context
– Usually used in the context of relationships

• Example: Many-one Advises relationship between Students and
Professors
– Many-one requirement says that no student may have more than one

advising professor
– Referential integrity constraint says that each student must have exactly

one advising professor and that professor must be present in the
database

• If R is a (many-to-one or one-to-one) relationship from E to F, we
use a rounded arrowhead pointing to F to indicate that we
require that the entity in F related by R to an entity in E must
exist

Example: Referential Integrity Constraint
• Each department has at most one chairperson who is its head

(there are times when a department may not have a chairperson)
• Each chairperson can be the head of at most one department and

this department must exist in the database

Enforcing Referential Integrity Constraints
• We forbid the deletion of a referenced entity (e.g., a

professor) until the professor advises no students
• We require that if we delete a referenced entity, we delete all

entities that reference it
• When we insert a (student, professor) pair into the Advises

relationship, the professor must exist in the Professors entity
set

Degree Constraints

• Indicates limits on the # of entities that can be
connected

• For example,

• Limits number of stars in each move to <=10

Degree Constraints
• Indicates limits on the # of entities that can be

connected

Steps in Database Design
• Requirements Analysis

– user needs; what must database do?
• Conceptual Design

– high level description (often done w/ER model)
– Object-Relational Mappings (ORMs: Hibernate, Rails, Django, etc.)

encourage you to program here
• Logical Design

– translate ER into DBMS data model
– ORMs often require you to help here too

• Schema Refinement
– consistency, normalization

• Physical Design - indexes, disk layout
• Security Design - who accesses what, and how

We are here

Just finished

Recap: Relational Model

• Built around a single concept for modelling data:
the relation or table

• Supports high-level programming language
(SQL)

• Has an elegant mathematical design theory
• Most current DBMS are relational

Recap: The Relation
• A relation is a two-dimensional table:

– Relation ⬄ Table
– Attribute ⬄ Column name
– Tuple ⬄ Row (not the header row)
– Database ⬄ Collection of relations

CoursesTaken

Recap: The Schema

• The schema of a relation is the name of the
relation followed by a parenthesized list of
attributes
– CoursesTaken(Student, Course, Grade)

• A design in a relational model consists of a set of
schemas.
– Such a set of schemas is called a relational database

schema

Converting ER Diagram to Relational Design

• Entity Set à Relation
– Attribute of Entity Set à Attribute of a Relation

• Relationship à relation whose attributes are
– Attribute of the relationship itself
– Key attributes of the connected entity sets

• Several special cases:
– Weak entity sets.
– Combining relations (especially for many-one relationships)
– ISA relationships and subclasses

Subclasses in ER Diagrams

Example: ER Diagram

Schemas for Entity Sets

• For each entity set, create a relation with the
same name and with the same set of attributes

• Students (Name, Address)
• Professors (Name, Office, Age)
• Departments (Name)

Mapping Entity Types

EMPLOYEE(SSN, address, first name, last name)
PROJECT(PNR, pname, pduration)

48

Mapping Multi-Valued Attribute Types
• For each multi-valued attribute type, we create a new

relation R
• We put the multi-valued attribute type in R together

with a foreign key referring to the primary key of the
original relation

• Multi-valued composite attribute types are again
decomposed into their components

• The primary key can then be set based upon the
assumptions

49

Mapping Multi-Valued Attribute Types

EMPLOYEE(SSN, ename, address)
EMP-PHONE(PhoneNr, SSN)
- SSN foreign key refers to SSN in EMPLOYEE, NULL NOT ALLOWED

50

Mapping Multi-Valued Attribute Types

51

Composite Attributes Types

52

Schemas for Relationships
• For each relationship, create a relation with the same name

whose attributes are
– Attributes of the relationship itself
– Key attributes of the connected entity sets (even if they are weak)

• Take (StudentName, Address, Number, DepartmentName)
• Teach (ProfessorName, Office, Number, DepartmentName)
• Evaluation (StudentName, Address, ProfessorName, Office,

Number, DepartmentName, Grade)

Example: ER Diagram

Combining Relations
• Consider many-one Teach relationship from Courses to Professors
• Schemas are:

– Courses(Number, DepartmentName, CourseName, Classroom, Enrollment)
– Professors(Name, Office, Age)
– Teach(Number, DepartmentName, ProfessorName, Office)

• The key for Courses uniquely determines all attributes of Teach
• We can combine the relations for Courses and Teach into a single

relation whose attributes are
– All the attributes for Courses
– Any attributes of Teach
– The key attributes of Professors

Rules for Combining Relations
• We can combine into one new relation Q

– The relation for an entity set E
– all many-to-one relationships R1, R2, ..., Rk from E to

other entity sets E1, E2, ..., Ek respectively
• The attributes of Q are

– All the attributes of E
– Any attributes of R1, R2, ..., Rk
– The key attributes of E1, E2, ..., Ek

Roles in Relationships

• If an entity set E appears k > 1 times in a relationship R (in
different roles), the key attributes for E appear k times in the
relation for R, appropriately renamed

• PreReq (RequirerNumber, RequirerDeptName,
RequirementNumber, RequirementDeptName)

Supporting Relationships
• Departments(Name)
• Courses(Number, DepartmentName,

CourseName, Classroom, Enrollment)
• Offer(Name, Number, DepartmentName)

– But Name and DepartmentName are
identical, so the schema for Offer is
Offer(Number, DepartmentName)

– The schema for Offer is a subset of the
schema for the weak entity set, so we can
dispense with the relation for Offer

Rules for Supporting Relationships
• If W is a weak entity set, the

relation for W has a schema
whose attributes are
– all attributes of W
– all attributes of supporting

relationships for W
– for each supporting relationship

for W to an entity set E
– the key attributes of E

• There is no relation for any
supporting relationship for W

Mapping Relationship Types

• Mapping a binary 1:1 relationship type
• Mapping a binary 1:N relationship type
• Mapping a binary N:M relationship type
• Mapping unary relationship types
• Mapping n-ary relationship types

60

Mapping a Binary 1:1 Relationship Type

• Create two relations: one for each entity type participating
in the relationship type

• The connection can be made by including a foreign key in
one of the relations to the primary key of the other

• In case of existence dependency (participation constraint),
put the foreign key in the existence-dependent relation and
declare it as NOT NULL

• The attribute types of the 1:1 relationship type can then be
added to the relation with the foreign key

61

Mapping a Binary 1:1 Relationship Type

62

Mapping a Binary 1:1 Relationship Type
EMPLOYEE(SSN, ename, address)
DEPARTMENT(DNR, dname, dlocation, SSN)
- SSN foreign key refers to SSN in EMPLOYEE, NULL NOT ALLOWED
- SSN is an alternate key

63

Mapping a Binary 1:N Relationship Type
• Binary 1:N relationship types can be mapped by including a

foreign key in the relation corresponding to the participating
entity type at the N-side of the relationship type

• The foreign key refers to the primary key of the relation
corresponding to the entity type at the 1-side of the
relationship type

• Depending upon the minimum cardinality, the foreign key can
be declared as NOT NULL or NULL ALLOWED

• The attribute types of the 1:N relationship type can be added
to the relation corresponding to the participating entity type

64

Mapping a Binary 1:N Relationship Type

EMPLOYEE(SSN, ename, address,
starting date, DNR)
- DNR foreign key refers to DNR in
DEPARTMENT, NULL NOT ALLOWED

DEPARTMENT(DNR, dname, dlocation)

65

Mapping a Binary 1:N Relationship Type

66

Mapping a Binary N:M Relationship Type

• M:N relationship types are mapped by introducing a new
relation R

• The primary key of R is a combination of foreign keys referring
to the primary keys of the relations corresponding to the
participating entity types

• The attribute types of the M:N relationship type can also be
added to R

67

Mapping a Binary N:M Relationship Type

EMPLOYEE(SSN, ename, address)
PROJECT(PNR, pname, pduration)
WORKS_ON(SSN, PNR, hours)
- SSN foreign key refers to SSN in EMPLOYEE, NULL NOT ALLOWED
- PNR foreign key refers to PNR in PROJECT, NULL NOT ALLOWED

68

Mapping a Binary N:M Relationship Type

69

Mapping Unary Relationship Types

• A recursive 1:1 or 1:N relationship type can be
implemented by adding a foreign key referring to
the primary key of the same relation

• For an N:M recursive relationship type, a new
relation R needs to be created with two NOT
NULL foreign keys referring to the original relation

70

Mapping Unary Relationship Types

EMPLOYEE(SSN, ename, address, supervisor)
- supervisor foreign key refers to SSN in EMPLOYEE, NULL ALLOWED
- supervisor is an alternate key

71

Mapping Unary Relationship Types

72

Mapping Unary Relationship Types

EMPLOYEE(SSN, ename, address)
SUPERVISION(Supervisor, Supervisee)

73

- Supervisor foreign key
refers to SSN in EMPLOYEE,
NULL NOT ALLOWED
- Supervisee foreign key
refers to SSN in EMPLOYEE,
NULL NOT ALLOWED

Mapping Unary Relationship Types

74

Mapping n-ary Relationship Types
• To map an n-ary relationship type, we first create relations for each

participating entity type
• We then also define one additional relation R to represent the n-ary

relationship type and add foreign keys referring to the primary keys
of each of the relations corresponding to the participating entity types

• The primary key of R is the combination of all foreign keys which are
all NOT NULL

• Any attribute type of the n-ary relationship can also be added to R

75

Mapping n-ary Relationship Types

TOURIST(TNR, …)
TRAV_AGENCY(ANR, …)
HOTEL(HNR, …)
BOOKING(TNR, ANR, HNR, price)

- TNR foreign key refers to TNR in Tourist, NULL NOT ALLOWED
...

76

Mapping n-ary Relationship Types

INSTRUCTOR(INR, …)
COURSE(CNR, …)
SEMESTER(SEM-YEAR, …)
OFFERS(INR,CNR,SEM-YEAR)
- INR foreign key refers to ...

77

Mapping n-ary Relationship Types

78

Mapping Weak Entity Sets

• A weak entity set should be mapped into a relation R
with all its corresponding attribute types

• A foreign key must be added referring to the primary key
of the relation corresponding to the owner entity type

• Because of the existence dependency, the foreign key is
declared as NOT NULL

• The primary key of R is then the combination of the
partial key and the foreign key

79

Mapping Weak Entity Sets

Hotel (HNR, Hname)
Room (RNR, HNR, beds)
- HNR foreign key refers to HNR in Hotel, NULL NOT ALLOWED

80

Mapping Weak Entity Sets

81

Putting It All Together

82

ER model Relational model

Entity set Relation

Weak entity set Foreign key

1:1 or 1:N relationship type Foreign key

M:N relationship type New relation with two foreign keys

n-ary relationship type New relation with n foreign keys

Simple attribute type Attribute type

Composite attribute type Component attribute type

Multi-valued attribute type Relation and foreign key

Key attribute type Primary or alternative key

Putting it All Together

83

Putting It All Together
• EMPLOYEE(SSN, ename, streetaddress, city, sex,

dateofbirth, SUPERVISOR, DNR)
– SUPERVISOR foreign key refers to SSN in EMPLOYEE, NULL ALLOWED
– DNR foreign key refers to DNR in DEPARTMENT, NOT NULL

• DEPARTMENT (DNR, dname, dlocation, MGNR)
– MGNR: foreign key refers to SSN in EMPLOYEE, NOT NULL
– MGNR is an alternate key

• PROJECT (PNR, pname, pduration, DNR)
– DNR: foreign key refers to DNR in DEPARTMENT, NOT NULL

• WORKS-ON (SSN, PNR, HOURS)
– SSN foreign key refers to SSN in EMPLOYEE, NOT NULL
– PNR foreign key refers to PNR in PROJECT, NOT NULL

84

Reading and Next Class

• Entity/Relationship Models II
– Ch 2, 3

• Next: SQL I: Ch 5

