
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Relational Model and Relational Algebra

Today’s Topics

• Relational Model
• Relational Algebra

The Relational Model
• Simple: Built around a single concept for modeling

data: the relation or table.
– A relational database is a collection of relations.
– Each relation is a table with rows and columns.

• Supports high-level programming language (SQL).
– Limited but very useful set of operations

• Has an elegant mathematical design theory.
• Most current DBMS are relational (Oracle, IBM DB2,

MS SQL)

The Relational Model

• Structure: Table (like an array of structs)
• Operations: Relational algebra (selection, projection,

conditions, etc)
• Constraints: E.g., grades can be only {A, B, C, D, F}

CoursesTaken

The Semi-structured model

• Structure: Trees or graphs, tags define role played by different
pieces of data

• Operations: Follow paths in the implied tree from one element to
another

• Constraints: E.g., can express limitations on data types

<CoursesTaken>
<Student>Hermione Grainger</Student>
<Course>Potions</Course>
<Grade>A</Grade>
<Student>Draco Malfoy</Student>
<Course>Potions</Course>
<Grade>B</Grade>

...
</CoursesTaken>

Relations
• A relation is a two-dimensional table:

– Relation ⬄ table
– Attribute ⬄ column name
– Tuple ⬄ row (not the header row)

• Database ⬄ collection of relations
• A relation has two parts:

– Schema defines column heads of the table (attributes)
– Instance contains the data rows (tuples, rows, or records) of the table

CoursesTaken

Schema

• The schema of a relation is the name of the relation followed by
a parenthesized list of attributes

CoursesTaken (Student, Course, Grade)
• A design in a relational model consists of a set of schemas.
• Such a set of schemas is called a relational database schema.

CoursesTaken

Relation and Schema
• Relation is a set of tuples

– Order in which we present the tuples does not matter

• The attributes in a schema are also a set (not a list)
– Schema is the same irrespective of order of attributes.

CoursesTaken(Student, Grade, Course)
– We specify a “standard” order when we introduce a schema

CoursesTaken

Degree and Cardinality

• Degree/Arity is the number of fields/attributes in schema
– (=3 in the table above)

• Cardinality is the number of tuples in relation
– (=4 in the table above)

Keys of Relations

• Keys are one form of integrity constraints (IC)
– No pair of tuples should have identical keys

• What is the key for CoursesTaken?
– Student if only one course in the relation
– Pair (Student, Course) if multiple courses
– What if student takes same course many times?

Keys of Relations

• Keys help associate tuples in different relations

Types of Keys

• Superkeys, (Candidate) keys
• Primary keys, Alternative keys
• Foreign keys

Superkeys

• A superkey is defined as a subset of attribute types of a
relation R with the property that no two tuples in any
relation state should have the same combination of values
for these attribute types

• A superkey specifies a uniqueness constraint
• A superkey can have redundant attribute types

• Example: (Studentnr, Name, HomePhone)

(Candidate) Keys
• A key K of a relation scheme R is a superkey of R with the

additional property that removing any attribute type from K
leaves a set of attribute types that is no superkey of R

• A key does not have any redundant attribute types
• Example: Studentnr

• The key constraint states that every relation must have at
least one key that allows uniquely identifying its tuples

• All super keys can't be candidate keys. All candidate keys
are super keys

Primary Keys, and Alternative Keys
• A relation may have more than one key (candidate keys)

– PRODUCT: product number and product name
• The primary key is used to identify tuples in the relation, to

establish connections to other relations, and for storage
purposes
– Entity integrity constraint: attribute types that make up the

primary key should always satisfy a NOT NULL constraint
• Only one Candidate Key can be Primary Key
• Other candidate keys are then referred to as alternate keys

Foreign Keys
• A set of attribute types FK in a relation R1 is a foreign

key of R1 if two conditions are satisfied (referential
integrity constraint)
– The attribute types in FK have the same domains as

the primary key attribute types PK of a relation R2

– A value FK in a tuple t1 of the current state r1 either
occurs as a value of PK for some tuple t2 in the current
state r2 or is NULL

Foreign Keys

Foreign Keys

Relational Constraints

Domain constraint The value of each attribute type A must be an atomic and single value

from the domain.

Key constraint Every relation has a key that allows uniquely identifying its tuples.

Entity integrity

constraint

The attribute types that make up the primary key should always satisfy a

NOT NULL constraint.

Referential integrity

constraint

A foreign key FK has the same domain as the primary key PK attribute

type(s) it refers to and either occurs as a value of PK or NULL.

Example Relational Data Model
SUPPLIER(SUPNR:integer, SUPNAME:string, SUPADDRESS:string,
SUPCITY:string, SUPSTATUS:integer)

PRODUCT(PRODNR:integer, PRODNAME:string, PRODTYPE:string, AVAILABLE
QUANTITY:integer)

SUPPLIES(SUPNR, PRODNR:integer, PURCHASE_PRICE:real,
DELIV_PERIOD:integer)

PURCHASE_ORDER(PONR:integer, PODATE:date, SUPNR:integer)

PO_LINE(PONR:integer, PRODNR:integer, QUANTITY:integer)

Example Relational Data Model

Relational Query Languages

Query languages: Allow manipulation and retrieval of data from a database.
Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for optimization.

Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for “real”
languages (e.g. SQL), and for implementation:
– Relational Algebra: More operational (imperative), very

useful for representing execution plans. (a procedural
programming language)

– Relational Calculus: Lets users describe what they want,
rather than how to compute it. (Non-operational,
declarative, basis for SQL.)

Preliminaries

A query is applied to relation instances, and the result of a query is also a
relation instance.
– Schemas of input relations for a query are fixed (but query will run

regardless of instance!)
– The schema for the result of a given query is also fixed! Determined by

definition of query language constructs.
Positional vs. named-field notation:
– Positional notation easier for formal definitions, named-field notation

more readable.
– Both used in SQL

Example Instances
R1

S1

S2

“Sailors” and “Reserves”
relations for our examples.
We’ll use positional or named
field notation, assume that
names of fields in query results
are `inherited’ from names of
fields in query input relations.

Relational Algebra
• Operator takes in a relation and output a different relation
• Pure relational algebra has set semantics

– No duplicate tuples in a relation instance
• Basic operators:

– Selection (σ) Selects a subset of rows from relation.
– Projection (!) Deletes unwanted columns from relation.
– Cross-product (⨯) Allows us to combine two relations.
– Set-difference (-) Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 and in reln. 2.

• Additional operators:
– Intersection, join, renaming: Not essential, but (very!) useful.

• Since each operator returns a relation, operators can be composed!

Relational Algebra Operators: Unary

• Unary Operators: on single relation
• Projection (p): Retains only desired columns (vertical)
• Selection (s): Selects a subset of rows (horizontal)
• Renaming (!): Rename attributes and relations.

Relational Algebra Operators: Binary

• Binary Operators: on pairs of relations
• Union (È): Tuples in r1 or in r2.
• Set-difference (—): Tuples in r1, but not in r2.
• Cross-product (´): Allows us to combine two relations.

Relational Algebra Operators: Compound
• Compound Operators: common “macros” for the above
• Intersection (∩): Tuples in r1 and in r2.
• Joins (⋈$, ⋈): Combine relations that satisfy predicates

Projection (!)
Deletes attributes that are not in projection
list.
Schema of result contains exactly the fields
in the projection list, with the same names
that they had in the (only) input relation.
No duplicates in result!
Result relation can be the input for
another relational algebra operation!
(Operator composition.)
Corresponds to the ____ list in SQL?

S2
set

semantics

Selection (")
Selects rows that satisfy selection
condition.
Schema of result identical to schema of
(only) input relation.
No duplicates in result!
Selects a subset of rows (horizontal)
Result relation can be the input for
another relational algebra operation!
(Operator composition.)
Corresponds to the ___ clause in SQL

S2

Composing Select and Project

What about:

"rating>8(psname(S1))

S1

S2

Example Instances

R1

S1 S2

Union (U)
All of these operations take two
input relations, which must be
union-compatible:
– Same number of fields.
– `Corresponding’ fields have

the same type.

S1 S2 S1 ∪ S2

Set Difference (−)
Same as with union, both input relations must be compatible.

SQL Expression: EXCEPT

S1 S2 S1 − S2

S1 − S2

Set Difference (−), cont.

sid sname rating age
22 dustin 7 45

S1 − S2

sid sname rating age
28 yuppy 9 35.0
44 guppy 5 35.0

S2 − S1

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

Relational Instance S2

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

Relational Instance S1

Cross-Product (×)
• R1 × S1: Each row of R1 paired with each row of S1
• Result schema has one field per field of S1 and R1, with field names `inherited’ if

possible.
• Conflict: Both S1 and R1 have a field called sid.

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

sid bid day
22 101 10/10/96
58 103 11/12/96

R1:

×

sid bid day sid sname rating age
22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0
58 103 11/12/96 22 dustin 7 45.0
58 103 11/12/96 31 lubber 8 55.5
58 103 11/12/96 58 rusty 10 35.0

=

How many rows in result? |R1|*|S2|
Schema compatability? Not needed.
Duplicates? None generated.

Renaming operator: 4

Renaming (# = “rho”)
• Renames relations and their attributes:
• Note that relational algebra doesn’t require names.

• We could just use positional arguments.

sid bid day sid sname rating age
22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0

58 103 11/12/96 22 dustin 7 45.0

58 103 11/12/96 31 lubber 8 55.5

58 103 11/12/96 58 rusty 10 35.0

R1 × S1

!(Temp1(1 à sid1, 4 à sid2), R1 × S1)
Output

Relation
Name

Renaming List
position à New Name

Input
Relation

sid1 bid day sid2 sname rating age

22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0

58 103 11/12/96 22 dustin 7 45.0

58 103 11/12/96 31 lubber 8 55.5

58 103 11/12/96 58 rusty 10 35.0

Temp1

Intersection
All of these operations take two
input relations, which must be
union-compatible:
– Same number of fields.
– `Corresponding’ fields have the

same type.
– Equivalent to:

S1 — (S1 — S2) S1 S2 S1 ∩ S2

Intersection (∩)

• S1 ∩ S2 = S1 — (S1 — S2)
sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S1 ∩ S2

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

Relational Instance S2

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

Relational Instance S1

S1 ?= – (–)S1 S2

Join
• Joins are compound operators (like intersection):

– Generally, "!(R × S)

• Hierarchy of common kinds:
– Theta Join (⋈!): join on logical expression #

• Equi-Join: theta join with theta being a conjunction of equalities
– Natural Join (⋈): equi-join on all matching column names

• Condition (Theta) Join ⬄ Theta Join ⬄Condition Join
• Note: we will need to learn a good join algorithm.
• Avoid cross-product if we can!!

Theta Join (⋈!) Example

• R1 ⋈sid=sid S1

• Note that output needs a rename operator!

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

sid bid day
22 101 10/10/96
58 103 11/12/96

R1:

⋈sid=sid

sid bid day sid sname rating age
22 101 10/10/96 22 dustin 7 45.0
58 103 11/12/96 58 rusty 10 35.0

=

Another Theta Join (⋈!) Example
• Condition (Theta) Join: R ⋈! S = "!(R × S)
• Example: More senior sailors for each sailor.
• S1 ⋈ f4 < f8 S1

f1 f2 f3 f4
22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:
S1 S1

f1 f2 f3 f4 f5 f6 f7 f8

22 dustin 7 45.0 22 dustin 7 45.0

22 dustin 7 45.0 31 lubber 8 55.5

22 dustin 7 45.0 58 rusty 10 35.0

31 lubber 8 55.5 22 dustin 7 45.0

31 lubber 8 55.5 31 lubber 8 55.5

31 lubber 8 55.5 58 rusty 10 35.0

58 rusty 10 35.0 22 dustin 7 45.0

58 rusty 10 35.0 31 lubber 8 55.5

58 rusty 10 35.0 58 rusty 10 35.0

S1 S1
sid sname rating age sid sname rating age2

22 dustin 7 45.0 31 lubber 8 55.5

58 rusty 10 35.0 22 dustin 7 45.0

58 rusty 10 35.0 31 lubber 8 55.5

Equi-Join
Equi-Join: A special case of condition join where the
condition c contains only equalities.

R1 ⋈sid S1
Theta join with AND of = predicates
Result schema similar to cross-product, but only one copy
of fields for which equality is specified.

Equi-Join Example

• R1 ⋈sid S1

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

sid bid day
22 101 10/10/96
58 103 11/12/96

R1:

⋈sid

sid bid day sname rating age
22 101 10/10/96 dustin 7 45.0
58 103 11/12/96 rusty 10 35.0

=

Natural Join (⋈)
• Special case of Equi-join in which equalities are specified for all

matching fields and duplicate fields are projected away

R ⋈ S = "unique fld. #eq. matching fld.(R × S)
• Compute R × S
• Select rows where fields appearing in both relations have equal

values
• Project onto the set of all unique fields.

Natural Join (⋈) Example
• R ⋈ S = $unique fld. "eq. matching fld.(R × S)

R1 ⋈ S1

S1:

sid bid day
22 101 10/10/96
58 103 11/12/96

R1:
sid bid day sid sname rating age
22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0
58 103 11/12/96 22 dustin 7 45.0
58 103 11/12/96 31 lubber 8 55.5
58 103 11/12/96 58 rusty 10 35.0

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0sid bid day sname rating age
22 101 10/10/96 dustin 7 45.0
58 103 11/12/96 rusty 10 35.0

Joins Examples

Sid Sname Rating Age
28 Yuppy 9 35.0
31 Lubber 8 55.5
44 Guppy 5 35.0
58 Rusty 10 35.0

Sailors

Sid Bid Day
22 101 10/10/96
58 103 11/12/96

Reserves

Bid Bname Color
101 Interlake Blue
102 Interlake Red
103 Clipper Green
104 Marine Red

Boats

Find names of sailors who’ve reserved boat #103

Solution 1: #sname((σbid=103Reserves) ⨝ Sailors)

Solution 2: ⍴(Temp1,(σbid=103Reserves)

⍴(Temp2,(Temp1 ⨝ Sailors)
#sname(Temp2)

Solution 3: #sname(σbid=103(Reserves ⨝ Sailors))

Find names of sailors who’ve reserved a red boat

Information about boat color only available in Boats; so need
an extra join:
#sname((σcolor=’red’Boats) ⨝ Reserves ⨝ Sailors))

▪ A (slightly) more efficient solution:
#sname(#sid((#bidσcolor=’red’Boats) ⨝ Reserves) ⨝ Sailors)

Find sailors who’ve reserved a red or a green boat
Can identify all red or green boats, then find sailors who’ve
reserved one of these boats:
ρ(Tempboats,(σcolor=’red’⋁color=’green’Boats))
#sname(Tempboats ⨝ Reserves ⨝ Sailors)

▪ Can also define Tempboats using union!
▪ What happens if ⋁ is replaced by ⋀ in this query?

Find sailors who’ve reserved a red and a green boat

Previous approach won’t work! Must identify sailors who’ve reserved
red boats, sailors who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ(Tempred,#sid((σcolor=’red’Boats) ⨝ Reserves))
ρ(Tempgreen,#sid((σcolor=’green’) ⨝ Reserves))
#sname((Tempred ∩ Tempgreen) ⨝ Sailors)

An Example of a “Rewrite”: Push-Down

An Example of a “Rewrite”: Eliminating Nesting

Extended Relational Algebra

• Group By / Aggregation Operator ('):
– %age, AVG(rating)(Sailors)

– With selection (HAVING clause):
• %age, AVG(rating), COUNT(*)>2(Sailors)

• Textbook uses two operators:
– GROUP BY age, AVG(rating) (Sailors)
– HAVING COUNT(*)>2

(GROUP BY age, AVG(rating)(Sailors))

Relational Algebra Summary

• Relational Algebra: a small set of operators mapping
relations to relations
– Operational, in the sense that you specify the explicit order of

operations
– A closed set of operators! Mix and match.

• Basic ops include: s, p, ´, È, —
• Important compound ops: Ç, ⋈

Summary

The relational model has rigorously defined query
languages that are simple and powerful.
Relational algebra is more operational; useful as internal
representation for query evaluation plans.
Several ways of expressing a given query; a query
optimizer should choose the most efficient version.

Summary

Relational calculus is non-operational, and users define
queries in terms of what they want, not in terms of how
to compute it. (Declarative)
Algebra and safe calculus have same expressive power,
leading to the notion of relational completeness.

Reading and Next Class

• The Relational Model and Relational Algebra
– Ch3, Ch4.1 – 4.2

• Next: Entity/Relationship Models I
– Ch 2

