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Today’s Topics

• Query Processing & Optimization
• FD’s & Normalization
• Security
• NoSQL
• Tx Management
• Logging and Recovery
• Data Warehousing
• Remember: Textbook exercise questions



Query Processing 

• Estimating costs 
– What are you estimating? = #disk accesses 
– How to estimate? 

• Sorting 
• Different types of joins (NLJ, Block-NLJ, SMJ, HJ) 
• Don’t just memorize the formulae, understand how to use/apply 

them



Query Evaluation

▪ Types of joins: NL, index NL, sort-merge, hash
▪ Query cost – indexes and relations
▪ Query optimization –

– good, not necessarily optimal
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Query Optimization 

• Algebraic manipulation 
• Selectivity estimation

– Many cases
– How to use selectivities to get the output size 



Query Optimization 

SELECT travelers.name, cities.name
FROM travelers left outer join cities on city_id = dest_id
WHERE cities.name == ‘Berkeley’
ORDER BY cities.name;

● Many different orders to  perform all these operations 
● We use the System R optimizer (aka Selinger optimizer)
● Plan space: only left-deep trees (important!), avoid cartesian 

products 
● Cost estimation: We’ll only use I/O cost for this class (exclude 

CPU)
● Search algorithm: dynamic programming



Selectivity Estimation

● To estimate the cost of a query, add up the estimated 
costs of each operator in the query
○ Need to know the size of the intermediate relations 

(generated from one operator and passed into another) 
■ Need to know the selectivity of predicates - what % of tuples are 

selected by a predicate

● These are all estimates: if we don’t know, we make up a 
value for it (selectivity = 1/10)

● System R assume uniform and indep. distribution of 
values



Selectivity Estimation - Equalities

Included for completeness - don’t memorize, just put on your reference sheet

|column| = the number of distinct values for the column

Note: If you have an index on the column, you can assume you know |column|, 
max(c), and min(c)

Predicate Selectivity Assumption

c = v 1 / (number of distinct values of c in index) We know |c|.

c = v 1 / 10 We don’t know |c|.

c1 = c2 1 / MAX(number of distinct values of c1, number of 
distinct values of c2)

We know |c1| and |c2|.

c1 = c2 1 / (number of distinct values of ci) We know |ci| but not |other column|.

c1 = c2 1 / 10 We don't know |c1| or |c2|.



Selectivity Estimation - Inequalities on Integers

Predicate Selectivity Assumption

c > v (high key - v) / (high key - low key + 1) We know max(c) and min(c).

c > v 1 / 10 We don't know max(c) and min(c).

c >= v (high key - v) / (high key - low key + 1) + (1 / 
number of distinct values of c)

We know max(c) and min(c).

c >= v 1 / 10 We don't know max(c) and min(c).



Selectivity Estimation - Inequalities on Integers

Predicate Selectivity Assumption

c < v (v - low key) / (high key - low key + 1) We know max(c) and min(c).

c < v 1 / 10 We don’t know max(c) and min(c).

c <= v (v - low key) / (high key - low key + 1) + (1 / number 
of distinct values of c)

We know max(c) and min(c).

c <= v 1 / 10 We don’t know max(c) and min(c).



Selectivity Estimation - Connectives

Predicate Selectivity Assumption

p1 AND p2 S(p1)S(p2) Independent predicates

p1 OR p2 S(p1) + S(p2) - S(p1)S(p2)

NOT p 1 - S(p)



Query Optimization 

● Pass 1: find minimum cost access method for each 
(relation, interesting order)
○ Index scan, full table scans

● Pass i (for 1 < i ≤ n): take in list of optimal plans for (i - 1 
relations,  interesting order) from Pass i-1, and compute 
minimum cost plan for (i relations, interesting orders) 
(every size i subset of the n relations)



Query Optimization 

● For n relations joined, perform n passes
○ on the i-th path, output only the best plan for joining 

any i of the n relations 
○ Also keep around plans that have higher cost but 

have an interesting order
● This along with only considering left-deep plans 

forms the crux of most QO questions



Query Optimization 

● Interesting orders are orderings on intermediate 
relations that may help reduce the cost of later joins
○ ORDER BY attributes
○ GROUP BY attributes
○ downstream join attributes

■ For instance, sort merge join will produce a 
relation that can help with an ORDER BY clause



Security

▪ Concerned with secrecy, availability and integrity
▪ Granting privileges to users/roles

– select, insert, delete, references
▪ SQL Injection & bind variables
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Redundancy and Anomalies

● Potential problems with relations
○ Redundancy: repeated sets of dependent values
○ Anomalies that can result from redundancy

■ Ex. Rating determines Wage, so Wage depends on Rating.
■ Update anomaly: if we change wage for one person, we have to change 

it for everyone
■ Insert anomaly: if we want to insert a person with rating 10, we have to 

figure out the wage associated with it
■ Delete anomaly: if we delete all employees with rating 8, we no longer 

know the wage value corresponding to rating 8 (what if we add a rating 8 
person later?)
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FDs & Normalization

▪ Understand functional dependencies: A àB
▪ Understand normal forms and their definitions 

– Be able to tell what NF a given set of FDs are in and 
decompose into a higher level NF

▪ Attribute closures
▪ Minimal/Canonical cover
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Functional Dependencies

● functional dependency: X → Y (X determines Y)
○ X, Y are sets of attributes
○ For every tuple in R, if attributes in X match, then 

attributes in Y must match
○ Can not be inferred from the data: must come from 

outside of the data itself
● superkey: X is a superkey of R if X → [all attributes of R]
● candidate key: the minimal superkey (smallest subset of 

attributes that is a superkey is itself; not necessarily smallest 
of all superkeys ever, but cannot be reduced further)
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Functional Dependencies: Inference Rules

● Armstrong’s Axioms
○ Reflexivity: If Y ⊆ X, then X → Y
○ Augmentation: If X → Y, then XZ → YZ

■ XZ → YZ does NOT imply X → Y
○ Transitivity: If X → Y and Y → Z, then X → Z

● Union: If X → Y and X → Z, then X → YZ  
● Decomposition: If X → YZ, then X → Y and X → Z

○ XZ → Y does NOT imply X → Y and Z → Y
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Functional Dependencies: Closure
● The closure of a set of FDs F is F+, the set of all FDs 

implied by F
○ hard to find, exponential in # of attributes, so we use attribute 

closure instead
● The attribute closure of an attribute X given a set of FDs is 

X+
○ set of all attributes A such that X → A is in F+ (all attributes that 

can be determined by just X)
○ Algorithm:

■ Closure = X;
■ Repeat until there is no change

● If there is an FD U → V in F s.t. U ⊆ closure,
○ set closure = closure ∪ V 20



Normal Forms

21

Form Requirement
1NF Each attribute name must be unique.

Each attribute value must be single.
Each row must be unique.

2NF 1NF
no non-key attribute is dependent on any proper subset of the key

3NF 2NF
No transitive dependencies

BCNF 3NF
All determinants are superkeys



Normalization: Boyce-Codd Normal Form 
(BCNF)
● R is in BCNF if:

○ for every FD X → A that holds over R, either A ⊆ X or X 
is a superkey of R

○ A ⊆ X means the FD is trivial.
● Redundancies removed in BCNF

○ every field of every tuple contains some information that 
cannot be inferred from the FDs

● Simpler to deal with than other normal forms
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Normalization: BCNF Decomposition
● We can decompose a relation R that is not in BCNF into 

multiple relations that are in BCNF
● Algorithm:

○ Find FD X → Y that violates BCNF
○ Decompose R into (R - X+) U X and X+

○ Repeat until no FDs violate BCNF
● Heuristic: for the violating FD, make Y as big as possible (i.e. 

replace with X+; helps avoid unnecessarily fine-grained 
decomposition)

● What relations you get depends on what order you go in
● two attribute relations are always in BCNF

23



Normalization: Lossiness
● Lossiness: we may not be able to reconstruct the original 

relation (doesn’t actually lose data, it generates bad data)
○ BCNF is lossless (can still reconstruct original relation)
○ Decompose R into X and Y. Decomposition is lossless iff F+

contains:
■ X INTERSECT Y → X or
■ X INTERSECT Y → Y

○ Alternatively, can attempt natural join between the two and 
manually check if the reconstruction works
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Normalization: Dependency Preservation
● Dependency preservation: if we can enforce F+ 

individually on each table; this in turn enforces the FDs on 
the entire database
○ BCNF is not necessarily dependency preserving (enforce FDs 

on each decomposed relation independently)
○ Formalism: dependency preserving iff Fx+ U Fy+ = F+ where Fx

are the FDs we can enforce just in relation X
■ For example: imagine we decomposed R = ABC into X=AB, 

Y=BC. If we have an FD A→C this is not dependency preserving 
because we can’t enforce the dependency on either relation
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Decomposition

▪ Given Relation R(A,B,C,D,E) and functional 
dependencies 
F{ A->BCD, C->E}, decompose until in 3NF.

▪ Answer:
– R1(A,B,C,D)
– R2(C,E)

▪ (Also review 3NF Synthesis)
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NoSQL Data Model: Key-Value Stores
● Data Model: (key, value) pairs

○ Key: typically a string/integer to uniquely identify the record
○ Value: can be anything (even a complex object)

● One of the most flexible data models (least-structured)
○ Data can be represented in many ways as (key, value) pairs
○ Best to choose the data model based on the desired use case

● Operations
○ get(key) and put(key, value)
○ Operations on value are not supported due to the flexible data model

● Distribution
○ Without replication: stored on one server
○ With replication: stored on multiple machines (updates need to be 

made on all servers)
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NoSQL Data Model: Document Stores

● Document: semi-structured data format (like JSON)
● It can be beneficial to provide some structure to the 

“value” of (key, value) pairs 
○ In this data model, the values are called documents

● One of the most structured data models
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JSON

● Supported types:
○ Object: collection of (key, value) pairs

■ Keys: strings
■ Values: object, array, or atomic (any JSON type)
■ Denoted with “{” and “}”

○ Array: ordered list of values
■ Denoted with “[” and “]”

○ Atomic: a number, string, boolean, or null
● Can be interpreted as a tree due to its inherent nested 

structure
● Self-describing: each document can have its own 

schema
29



JSON vs. Relational Model
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JSON Relational

Flexibility Very flexible, can represent complex 
structures and nested data

Less flexible

Schema Enforcement Self-describing; Each document can 
have unique structure

Schema is fixed

Representation Text-based (easily parsed and 
manipulated by many languages)

Binary representation (designed for 
efficient storage and retrieval from disk)

“Enforcing schema on read” “Enforcing schema on write”



MQL
● Operates on collections
● Dot notation can be used to index into nested documents or arrays

○ Ex: “student_information.name” → name field within the student 
document

○ Must be used with quotes
● $ notation indicate the special keywords

○ Ex: $gt, $lte, $add
○ Used in the “field” part of “field:value” expression

● 3 main types of queries
○ Retrieval: essentially SELECT-WHERE-ORDER BY-LIMIT queries
○ Aggregation: in MQL this refers to a general pipeline of operations
○ Updates
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Tx Management
▪ ACID – Atomic, Consistent, Isolated, Durable
• Problems with concurrency and Serializability concept 
• Conflict-Serializability, how to detect 
▪ Definitions:

– Transaction
– Schedule – serial, serializable

▪ Strict 2PL
▪ Transaction Logs, Aries Recovery Algorithm
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Why Transactions?

● Usually have multiple users accessing the database 
concurrently

● Can cause these problems:
● Inconsistent Reads: A user reads only part of what was 

updated (one user updates two tables, another user reads old 
version of one table and new version of the other table)

● Lost Update: Two users try to update the same record so one of 
the updates gets lost

● Dirty Reads: One user reads an update that was never 
committed (usually due to reading after abort but before rollback)
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Transactions

● A sequence of multiple actions that should be executed as a single, 
logical, atomic unit. Abbreviated as “Xact”. Enforces these 
properties:

● Atomicity: A transaction ends in two ways: it either commits or 
aborts; either all actions in the Xact happen, or none happen.

● Consistency: If the DB starts out consistent (adhering to all rules), 
it ends up consistent at the end of the Xact.

● Isolation: Execution of each Xact is isolated from that of others; 
DBMS will ensure that each Xact executes as if it ran by itself, even 
with interleaved actions

● Durability: If a Xact commits, its effects persist; the effects of a 
committed Xact must survive failures.
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Equivalence and Serializability
● Easiest way to enforce Isolation is to run transactions 

one at a time (a serial schedule), but this is inefficient
● Two schedules are equivalent if 

○ They involve the same transactions
○ Each transaction has its operations in the same order
○ The final state after all the transactions is the same

● If a schedule is equivalent to a serial schedule, it is 
serializable

● Some schedules that interleave transaction actions are 
serializable, but it’s hard to check.
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Conflict Serializability 
● Two operations in a schedule conflict if:

○ at least one operation is a write
○ they are on different transactions
○ they work on the same resource

● Conflicts are basically just pairs of operations that we 
need to be careful about

T1: R(A) R(B)           W(A)
T2:           R(B) W(B) 
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Conflict Serializability 
● If two schedules order their conflicting pairs the same way, they 

are conflict equivalent (and thus equivalent).
● If a schedule is conflict equivalent to a serial schedule, it is 

conflict serializable.
● Conflict serializability is a more strict condition than serializability 

(all conflict serializable schedules are serializable, but not all 
serializable schedules are conflict serializable). However, it’s a lot 
easier to check.

● View equivalence/serializability falls in between them in terms of 
difficulty, but it’s NP hard to check for.
○ Essentially, check same conditions as conflict serializability, except 

you can ignore blind writes (two writes without an interleaving read)

37



Conflict Serializability 
● How do we check for conflict equivalence/serializability?

○ We build a dependency graph (precedence graph)
■ If an operation in Ti conflicts with an operation in Tj, and the 

operation in Ti comes first, add an edge from Ti to Tj

■ Cycle → not conflict serializable

T1: R(A) R(B) W(A)
T2:           R(B) W(B)

[T1] -------------> [T2]
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Types of Serializability
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All Schedules

Serial

View Serializable

Conflict Serializable

Serializable



Locks
● Make sure that no other transaction is modifying the 

resource while you are using that resource
● Lock types: for a given resource A,

○ S (Shared) can read A and all descendants of A.
○ X (Exclusive) can read and write A and all descendants of A.
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2-Phase Locking (2PL)
● One way to enforce conflict serializability
● In 2-phase locking,

○ a transaction may not acquire a lock after it has released any lock
○ two “phases”

■ from start to until a lock is released, the transaction is just acquiring locks
■ then until the end of the transaction, it is just releasing locks

41
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# locks held

release phaseacquisition 
phase



Strict 2-Phase Locking (Strict 2PL)
● The problem is that 2PL lets another transaction read new values 

before the transaction commits (since locks can be released long 
before commit)

● Strict 2PL avoids cascading aborts (and guarantees conflict 
serializability and recoverability)
○ Same as 2PL, except only allow releasing locks at end of transaction

42

# locks held

acquisition 
phase

time

release all locks at 
end of xact



Deadlock Detection
● We draw out a “waits-for” graph

○ One node for each transaction
○ If Tj holds a lock that conflicts with the lock that Ti wants, we 

add an edge from Ti to Tj
○ A cycle indicates a deadlock (between the transactions in the 

cycle) - we can abort one to end the deadlock
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Deadlock Avoidance
● Typically assign priority based on start time (starting earlier means 

higher priority), but can use other methods (will specify on exams)
● Two approaches 

○ wait-die: if a transaction Ti wants lock but Tj has conflicting lock
■ if Ti is higher priority, it waits for Tj to release conflicting lock
■ if Ti is lower priority, it aborts
■ transactions can only wait on lower priority transactions → cannot have 

deadlock (lowest priority transactions cannot wait)
○ wound-wait: if a transaction Ti wants lock but Tj has conflicting lock

■ if Ti is higher priority, it causes Tj to abort (“wound”)
■ if Ti is lower priority, it waits for Tj to finish
■ transactions can only wait on higher priority transactions → cannot have 

deadlock (highest priority transactions can’t wait)
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Recovery Policies
● Steal/No Force

○ Steal - Uncommitted transactions can overwrite the most recent 
committed value of an object on disk 
■ Necessitates UNDO for Atomicity (all or none of Xact’s operations persist)

○ No Force - Don’t have to write all pages modified by a transaction 
from the buffer cache to disk before committing the transaction
■ Necessitates REDO for Durability (not losing results of committed Xacts)

○ Harder to enforce atomicity and durability, but gives best performance
● No Steal locks buffer pages from optimal use, but keeps 

uncommitted changes away from disk (easy atomicity)
● Force necessitates extra writes on commit, but everything is 

guaranteed to be there (easy durability)
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Write-Ahead Logging
1. Log records must be on disk before the data page 

gets written to disk.
○ How we achieve atomicity
○ Can’t undo an operation if data page written before log - don’t 

know operation happened
2. All log records must be written to disk when a 

transaction commits.
○ How we achieve durability
○ We know what operations to redo in case of crash
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Undo Logging
● Write log records to ensure atomicity after a system crash:
○ <START T>: transaction T has begun
○ <COMMIT T>: T has committed
○ <ABORT T>: T has aborted
○ <T,X,v>: T has updated element X, and its old value was v

● If T commits, then FLUSH(X) must be written to disk before 
<COMMIT T>
○ Force – we can UNDO any modifications if a Xact crashes before 

COMMIT

● If T modifies X, then <T,X,v> log entry must be written to disk 
before FLUSH(X)
○ Steal – we can UNDO any modifications if a Xact crashes before 

FLUSH
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Redo Logging
● Write log records to ensure durability after a system 

crash:
○ <START T>: transaction T has begun
○ <COMMIT T>: T has committed
○ <ABORT T>: T has aborted
○ <T,X,v>: T has updated element X, and its new value was v

● If T modifies X, then both <T,X,v> and <COMMIT T>
must be written to disk before FLUSH(X)
○ No-Steal, No-Force – we can REDO any modifications if a 

Xact crashes before FLUSH
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Undo/Redo Logging Summary
• Undo logging: 
• Uses Steal/Force policies
• Undoes all updates for running transactions

• Redo logging: 
• Uses No Steal/No Force policies
• Redoes all updates for committed transactions
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Aries Recovery - LSNs
● LSN (Log Sequence Number): stored in each log record. Unique, 

increasing, ordered identifier for each log record 
● flushedLSN: stored in memory, keeps track of the most recent log 

record written to disk 
● pageLSN: LSN of the last operation to update the page (in memory 

page may have a different pageLSN than the on disk page) 
● prevLSN: stored in each log record, the LSN of the previous record 

written by the current record’s transaction 
● lastLSN: stored in the Xact Table, the LSN of the most recent log 

record written by the transaction 
● recLSN: stored in the DPT, the log record that first dirtied the page 

since the last checkpoint  
● undoNextLSN: stored in CLR records, the LSN of the next 

operation we need to undo for the current record’s transaction 50



Recovery Structures
● Transaction Table - stores information on active 

transactions. Fields include
○ Xid (Transaction ID)
○ Status (Running, Committing, Aborting)
○ lastLSN

● Dirty Page Table (DPT) - tracks dirty pages (pages 
whose changes have not been flushed to disk)
○ pageID
○ recLSN
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Record Types
● Records have LSN, common fields include xid (transaction ID), 

pageID (for modified page), type
● UPDATE - write operation (SQL insert/update/delete). Also includes 

fields for offset (where data change started), length (how much 
data was changed), old_data (old version of changed data - used 
for undos), new_data (updated version of data - used for redos)

● COMMIT - Xact is beginning committing process (ARIES: flush log 
up to and including COMMIT record)

● ABORT - Xact is beginning aborting process (ARIES: begin writing 
CLRs for undone UPDATEs)
○ Compensation Log Record (CLR) - indicates a given UPDATE has 

been undone
● END - Xact is finished (as in, finished committing or aborting)
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Record Types (cont.)
● Checkpoint Records

○ Useful for ARIES analysis so we don’t start from very beginning 
of log

○ Checkpoint serves as snapshot of Xact Table/DPT
○ Fuzzy checkpoints - Xacts operating during checkpoint; Xact 
○ BEGIN CHECKPOINT - checkpoint start, earliest point Xact 

Table/DPT could represent
○ END CHECKPOINT - checkpoint end, holds Xact Table/DPT 

snapshot
● Master Record - stores location of most recent 

checkpoint for recovery purposes, usually LSN 0
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ARIES: Analysis (Part 1)
● Reconstructing Xact Table and DPT
● Need to know which transactions started/committed/aborted, which 

pages dirtied
● Start from begin checkpoint log record (or start of log), go until end 

of log
● On any record that is not an END record: 

○ Add the Xact to the Xact Table if not in table
○ Set the lastLSN of the transaction to the current operation’s LSN
○ If the record is a COMMIT or an ABORT record, change the status of 

Xact to Committing/Aborting
● If the record is an UPDATE record and the page being updated is 

not in the DPT, add the page to the DPT and set recLSN equal to 
the LSN

● If the record is an END record, remove the transaction from the 
Xact table.



ARIES: Analysis (Part 2)

● After going through the log, clean up the Xact Table
● For each Xact in the Xact Table:

○ Write END records for committing Xacts. Because they’re 
committing, they must be finished - preserve durability

○ For running Xacts, change status to aborting and write ABORT 
record - preserve atomicity since not finished



ARIES: Redo

● Redo updates and CLRs from the earliest recLSN in the DPT to get 
back unflushed changes from before crash, unless:
○ page not in DPT

■ page on disk must be up to date, since we have no changes!
○ recLSN of page > LSN

■ no need to undo here: recLSN of page is first record that dirtied page, so 
this change must have been flushed

○ pageLSN (disk) >= LSN
■ page LSN for disk (LSN of last record with change written to disk) is the 

authoritative source for determining which changes have been applied in 
disk

○ Redo with after-image (redo state), update pageLSNs as you go



ARIES: Undo

● Undo each Xact in the Xact Table
○ Only UNDO updates (ignore CLRs)

● Start at end of log and work backwards to the beginning
● For every UPDATE the undo phase undoes, write a corresponding 

CLR to the log. 
○ undoNextLSN stores the LSN of the next operation to be undone for 

that transaction (the prevLSN of the operation that you are undoing). 
● Once you have undone all the operations for a transaction, write 

the END record for that transaction to the log.



ARIES: Overall
● Why does redo happen before undo?

○ If failure happens during redo or undo, next 
recovery can pick up what previous recovery 
has left and continue
■ E.g. Crash while writing CLRs in UNDO, we 

have to redo them 
● When are transactions removed from the xact

table? 
○ END log record

● When is a page removed from the DPT? 
○ When that page flushed to disk (pages aren’t 

necessarily flushed to disk on commit - no 
force)



Logging and Recovery 

• Make sure you know *exactly* how recovery takes place, 
and what is logged 
– Practice, practice
– Check out problems in lectures, practice problems and hws
– Be comfortable with small conceptual questions



Workloads
● Online Transaction Processing (OLTP)

○ Typically simple lookups with few joins or aggregations
○ Characterized by high number of transactions by a high number of 

users
○ Modern “Web 2.0” applications with lots of user-generated content 

and user interactions have OLTP workloads
● Online Analytical Processing (OLAP)

○ Read-only queries and typically involve many joins and aggregations
○ Used to support data-driven decision making

● OLTP and OLAP are served by separate databases
○ Extract-transform-load (ETL) migrates data from OLTP systems to 

OLAP systems



OLAP

● Prioritizes in summarizing and extracting insights from petabytes of 
data

● Performed on a separate data warehouse separate from OLTP’s 
critical path
○ Data warehouse is periodically updated with OLTP using ETL 

(consolidate, clean, canonicalize data)
○ Ex: run a chron job to update the data warehouse at the end of each 

day



Next Week

Project Presentation

Good Luck!


