CS 4604: Introduction to
Database Management Systems

Final Review

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

VIRGINIA
TECH.

Today’s Topics

* Query Processing & Optimization
 FD’s & Normalization

« Security

 NoSQL

« Tx Management

* Logging and Recovery

« Data Warehousing

« Remember: Textbook exercise questions

Query Processing

« Estimating costs

— What are you estimating? = #disk accesses
— How to estimate?
« Sorting
 Different types of joins (NLJ, Block-NLJ, SMJ, HJ)

« Don’t just memorize the formulae, understand how to use/apply
them

Query Evaluation

" Types of joins: NL, index NL, sort-merge, hash
" Query cost — indexes and relations
" Query optimization —

— good, not necessarily optimal

Query Optimization

» Algebraic manipulation

« Selectivity estimation
— Many cases
— How to use selectivities to get the output size

Query Optimization

SELECT travelers.name, cities.name

FROM travelers left outer join cities on city id = dest _id
WHERE cities.name == ‘Berkeley’

ORDER BY cities.name;

» Many different orders to perform all these operations
o We use the System R optimizer (aka Selinger optimizer)

o Plan space: only left-deep trees (important!), avoid cartesian
products

o Cost estimation: We'll only use I/O cost for this class (exclude
CPU)

e Search algorithm: dynamic programming

\Vy/at

Selectivity Estimation

e To estimate the cost of a query, add up the estimated

costs of each operator in the query
O Need to know the size of the

(generated from one operator and passed into another)
B Need to know the of predicates - what % of tuples are
selected by a predicate

e These are all estimates: if we don’t know, we make up a
value for it (selectivity = 1/10)
e System R assume uniform and indep. distribution of

¥V AT WIS

values

Selectivity Estimation - Equalities

Predicate Selectivity Assumption

cC=vV 1/ (number of distinct values of ¢ in index) We know |c|.

cC=v 1/10 We don’t know |c|.
cl=c2 1/ MAX(number of distinct values of ¢c1, number of | We know |c1| and |c2|.

distinct values of c2)

cl=c2 1/ (number of distinct values of ci) We know |ci| but not |other column|.

cl=c2 1/10 We don't know |c1]| or |c2|.

Included for completeness - don’t memorize, just put on your reference sheet
|column| = the number of distinct values for the column

Note: If you have an index on the column, you can assume you know |column|,

max(c), and min(c) \ T

Selectivity Estimation - Inequalities on Integers

Predicate Selectivity Assumption

c>vV (high key - v) / (high key - low key + 1) We know max(c) and min(c).

c>v 1/10 We don't know max(c) and min(c).

cC>=V (high key - v) / (high key - low key + 1) + (1/ We know max(c) and min(c).
number of distinct values of c¢)

c>=vV 1/10 We don't know max(c) and min(c).

Selectivity Estimation - Inequalities on Integers

Predicate Selectivity Assumption
c<v (v - low key) / (high key - low key + 1) We know max(c) and min(c).
c<v 1/10 We don’t know max(c) and min(c).
cC<=vV (v - low key) / (high key - low key + 1) + (1 / number | We know max(c) and min(c).

of distinct values of c)
cC<=v 1/10 We don’t know max(c) and min(c).

Selectivity Estimation - Connectives

Predicate Selectivity Assumption

p1 AND p2 S(p1)S(p2) Independent predicates
p1 OR p2 S(p1) + S(p2) - S(p1)S(p2)

NOT p 1-8(p)

Query Optimization

e Pass 1: find minimum cost access method for each
(relation, interesting order)
o Index scan, full table scans

e Passi (for 1 <i<n): take in list of optimal plans for (i - 1
relations, interesting order) from Pass i-1, and compute
minimum cost plan for (i relations, interesting orders)
(every size i subset of the n relations)

Query Optimization

e For n relations joined, perform n passes
o on the i-th path, output only the best plan for joining
any i of the n relations
o Also keep around plans that have higher cost but
have an interesting order
e This along with only considering left-deep plans
forms the crux of most QO questions

Query Optimization

° are orderings on intermediate
relations that may help reduce the cost of later joins
o ORDER BY attributes
o GROUP BY attributes
o downstream join attributes
m Forinstance, sort merge join will produce a
relation that can help with an ORDER BY clause

\Vy/at

Security

" Concerned with secrecy, availability and integrity

" Granting privileges to users/roles
— select, insert, delete, references

= SQL Injection & bind variables

Redundancy and Anomalies

e Potential problems with relations

® : repeated sets of dependent values
© Anomalies that can result from redundancy
m Ex. Rating determines Wage, so Wage depends on Rating.

u . if we change wage for one person, we have to change
it for everyone

u . if we want to insert a person with rating 10, we have to
figure out the wage associated with it

m . if we delete all employees with rating 8, we no longer

know the wage value corresponding to rating 8 (what if we add a rating 8
person later?)

FDs & Normalization

Understand functional dependencies: A 2B

Understand normal forms and their definitions

— Be able to tell what NF a given set of FDs are in and
decompose into a higher level NF

Attribute closures
Minimal/Canonical cover

Functional Dependencies

° : X =Y (X determines Y)
o X, Y are sets of attributes
o For every tuple in R, if attributes in X match, then
attributes in Y must match
o Can not be inferred from the data: must come from
outside of the data itself
° : X is a superkey of R if X — [all attributes of R]
° . the minimal superkey (smallest subset of
attributes that is a superkey is itself; not necessarily smallest

of all superkeys ever, but cannot be reduced further)

Functional Dependencies: Inference Rules

e Armstrong’s Axioms

o fYc X thenX —->Y
o If X =Y, then XZ - YZ
m XZ— YZdoes NOT imply X —-»Y
o fX—-Yand¥Y —-Z,then X - Z

e Union:If X—>Yand X — Z,then X - YZ
e Decomposition: If X - YZ, then X ->Yand X - Z
o XZ—Ydoes NOT implyX—YandZ—-Y

Functional Dependencies: Closure

e The of a set of FDs F is F*, the set of all FDs
implied by F
o hard to find, exponential in # of attributes, so we use attribute
closure instead
e The of an attribute X given a set of FDs is
X+
o set of all attributes A such that X — Ais in F* (all attributes that

can be determined by just X)

o Algorithm:
m Closure = X;
m Repeat until there is no change
() — C

o set closure = closure U V W

Normal Forms

Form Requirement
1NF Each attribute name must be unique.
Each attribute value must be single.
Each row must be unique.
2NF 1NF
no non-key attribute is dependent on any proper subset of the key
3NF 2NF
No transitive dependencies
BCNF 3NF

All determinants are superkeys

VIRGINIA
TECH.

Normalization: Boyce-Codd Normal Form
(BCNF)

e Risin BCNF if:

o forevery FD X — Athat holds over R, either A€ X or X
IS a superkey of R
o A € X means the FD is trivial.

e Redundancies removed in BCNF
o every field of every tuple contains some information that
cannot be inferred from the FDs

e Simpler to deal with than other normal forms

Normalization: BCNF Decomposition

e We can decompose a relation R that is not in BCNF into
multiple relations that are in BCNF
e Algorithm:
o Find FD X — Y that violates BCNF
© Decompose R into (R - X*) U X and X*
o Repeat until no FDs violate BCNF

e Heuristic: for the violating FD, make Y as big as possible (i.e.
replace with X+; helps avoid unnecessarily fine-grained

decomposition)
e \What relations you get depends on what order you go in

two attribute relations are always in BCNF

Normalization: Lossiness

. we may not be able to reconstruct the original

relation (doesn’t actually lose data, it generates bad data)
o BCNEF is lossless (can still reconstruct original relation)

o Decompose R into X and Y. Decomposition is lossless iff F*

contains:
m XINTERSECTY — Xor
m XINTERSECTY —»Y
o Alternatively, can attempt natural join between the two and
manually check if the reconstruction works

Normalization: Dependency Preservation

o . if we can enforce F+
individually on each table; this in turn enforces the FDs on

the entire database
o BCNF is not necessarily dependency preserving (enforce FDs
on each decomposed relation independently)
o Formalism: dependency preserving iff F,* U F,* = F* where Fy
are the FDs we can enforce just in relation X
B For example: imagine we decomposed R = ABC into X=AB,

Y=BC. If we have an FD A—C this is not dependency preserving
because we can’t enforce the dependency on either relation

Decomposition

= Given Relation R(A,B,C,D,E) and functional
dependencies
F{ A->BCD, C->E}, decompose until in 3NF.
= Answer:
— R1(A,B,C,D)
— R2(C,E)

= (Also review 3NF Synthesis)

NoSQL Data Model: Key-Value Stores

. Data Model: (key, value) pairs
o Key: typically a string/integer to uniquely identify the record
o Value: can be anything (even a complex object)
« One of the most flexible data models (least-structured)
o Data can be represented in many ways as (key, value) pairs
o Best to choose the data model based on the desired use case
o Operations
o get(key) and put(key, value)
o Operations on value are not supported due to the flexible data model
 Distribution
o Without replication: stored on one server
o With replication: stored on multiple machines (updates need to be

made on all servers)

NoSQL Data Model: Document Stores

« Document: semi-structured data format (like JSON)
. It can be beneficial to provide some structure to the

“value” of (key, value) pairs
o In this data model, the values are called documents

. One of the most structured data models

JSON
« Supported types:

o Object: collection of (key, value) pairs
m Keys: strings
s Values: object, array, or atomic (any JSON type)
= Denoted with “{" and “}’
o Array: ordered list of values
s Denoted with “[" and “]”

o Atomic: a number, string, boolean, or null
. Can be interpreted as a tree due to its inherent nested
structure
. Self-describing: each document can have its own

schema N ad

JSON vs. Relational Model

JSON

Relational

Flexibility

Very flexible, can represent complex
structures and nested data

Less flexible

Schema Enforcement

Self-describing; Each document can
have unique structure

Schema is fixed

Representation

Text-based (easily parsed and
manipulated by many languages)

Binary representation (designed for
efficient storage and retrieval from disk)

"Enforcing schema on read”

"Enforcing schema on write”

MQL

Operates on collections

Dot notation can be used to index into nested documents or arrays
o Ex: “student_information.name” — name field within the student

document

o Must be used with quotes

$ notation indicate the special keywords
o Ex: $gt, Slte, $add
o Used in the “field” part of “field:value” expression

3 main types of queries
o Retrieval: essentially SELECT-WHERE-ORDER BY-LIMIT queries
o Aggregation: in MQL this refers to a general pipeline of operations
o Updates

\Vy/at

Tx Management

= ACID - Atomic, Consistent, Isolated, Durable
* Problems with concurrency and Serializability concept
« Conflict-Serializability, how to detect
* Definitions:
— Transaction
— Schedule — serial, serializable

= Strict 2PL
" Transaction Logs, Aries Recovery Algorithm

Why Transactions?

e Usually have multiple users accessing the database
concurrently

e Can cause these problems:

e Inconsistent Reads: A user reads only part of what was
updated (one user updates two tables, another user reads old
version of one table and new version of the other table)

e Lost Update: Two users try to update the same record so one of
the updates gets lost

e Dirty Reads: One user reads an update that was never
committed (usually due to reading after abort but before rollback)

\Vy/at

Transactions

e A sequence of multiple actions that should be executed as a single,
logical, atomic unit. Abbreviated as “Xact”. Enforces these
properties:

e Atomicity: A transaction ends in two ways: it either commits or
aborts; either all actions in the Xact happen, or none happen.

e Consistency: If the DB starts out consistent (adhering to all rules),
it ends up consistent at the end of the Xact.

e Isolation: Execution of each Xact is isolated from that of others;
DBMS will ensure that each Xact executes as if it ran by itself, even
with interleaved actions

e Durability: If a Xact commits, its effects persist; the effects of a
tod X e fail |

\Vy/at

Equivalence and Serializability

Easiest way to enforce Isolation is to run transactions
one at a time (a serial schedule), but this is inefficient

Two schedules are equivalent if
o They involve the same transactions
o Each transaction has its operations in the same order
o The final state after all the transactions is the same

If a schedule is equivalent to a serial schedule, it is

serializable
Some schedules that interleave transaction actions are

serializable, but it's hard to check.

\Vy/at

Conflict Serializability

e Two operations in a schedule conflict if:

o at least one operation is a write
o they are on different transactions
o they work on the same resource

e Conflicts are basically just pairs of operations that we
need to be careful about

T1: R(A) R(B) W(A)
T2: R(B) W(B)

Conflict Serializability

e If two schedules order their conflicting pairs the same way, they
are conflict equivalent (and thus equivalent).

e If a schedule is conflict equivalent to a serial schedule, it is
conflict serializable.

e Conflict serializability is a more strict condition than serializability
(all conflict serializable schedules are serializable, but not all
serializable schedules are conflict serializable). However, it'’s a lot
easier to check.

e View equivalence/serializability falls in between them in terms of
difficulty, but it's NP hard to check for.

o Essentially, check same conditions as conflict serializability, except
you can ignore blind writes (two writes without an interleaving read)

\Vy/at

Conflict Serializability

e How do we check for conflict equivalence/serializability?

o We build a dependency graph (precedence graph)
m [f an operation in T; conflicts with an operation in T;, and the
operation in T; comes first, add an edge from T, to T;
m Cycle — not conflict serializable

T1: R(A) R(B) W(A)
T2: R(B) W(B)
(L) — > [T2]

Types of Serializability

ﬁ‘ll Schedules \

/Serializable \

[View Serializable h
r

Conflict Serializablg

\[Serial])
\ - .

N ~ _/

Locks

e Make sure that no other transaction is modifying the
resource while you are using that resource

e Lock types: for a given resource A,

o S (Shared) can read A and all descendants of A.
o X (Exclusive) can read and write A and all descendants of A.

2-Phase Locking (2PL)

e One way to enforce conflict serializability

e In 2-phase locking,

O a transaction may not acquire a lock after it has released any lock

o two “phases’

B from start to until a lock is released, the transaction is just acquiring locks
B then until the end of the transaction, it is just releasing locks

locks held

acquisition
phase

release phase

time

Strict 2-Phase Locking (Strict 2PL)

e The problem is that 2PL lets another transaction read new values
before the transaction commits (since locks can be released long
before commit)

avoids cascading aborts (and guarantees conflict
serializability and recoverability)
o Same as 2PL, except only allow releasing locks at end of transaction

acquisition
phase

locks held release all locks at

end of xact

|~ ,
time N7/~ 1E

Deadlock Detection

e We draw out a
o One node for each transaction
o If T; holds a lock that conflicts with the lock that T; wants, we
add an edge from T; to T,
o A cycle indicates a deadlock (between the transactions in the
cycle) - we can abort one to end the deadlock

Deadlock Avoidance

e Typically assign priority based on start time (starting earlier means
higher priority), but can use other methods (will specify on exams)

e Two approaches

. if a transaction T; wants lock but T; has conflicting lock
m if T; is higher priority, it waits for T; to release conflicting lock
m if T, is lower priority, it aborts
m transactions can only wait on lower priority transactions — cannot have
deadlock (lowest priority transactions cannot wait)

. if a transaction T; wants lock but T; has conflicting lock
m if T; is higher priority, it causes T; to abort (“wound”)
if T; is lower priority, it waits for T; to finish
m transactions can only wait on higher priority transactions — cannot have

deadlock (highest priority transactions can’t wait)

Recovery Policies

e Steal/No Force

O Steal - Uncommitted transactions can overwrite the most recent
committed value of an object on disk
m Necessitates UNDO for Atomicity (all or none of Xact's operations persist)
O No Force - Don't have to write all pages modified by a transaction

from the buffer cache to disk before committing the transaction
m Necessitates REDO for Durability (not losing results of committed Xacts)

o Harder to enforce atomicity and durability, but gives best performance
e No Steal locks buffer pages from optimal use, but keeps
uncommitted changes away from disk (easy atomicity)
e Force necessitates extra writes on commit, but everything is
guaranteed to be there (easy durability)

\Vy/at

Write-Ahead Logging

1. Log records must be on disk before the data page

gets written to disk.
o How we achieve atomicity
o Can’t undo an operation if data page written before log - don’t
know operation happened
2. All log records must be written to disk when a

transaction commits.
o How we achieve durability
o We know what operations to redo in case of crash

Undo Logging

e \Write log records to ensure atomicity after a system crash:

O <START T>: transaction T has begun
O <COMMIT T>: T has committed

O <ABORT T>: T has aborted
O <T,X,v>: T has updated element X, and its old value was v

e If T commits, then FLUSH(X) must be written to disk before

<COMMIT T>
o Force —we can UNDO any modifications if a Xact crashes before

COMMIT

e If T modifies X, then <T,X,v> log entry must be written to disk

before FLUSH(X)
O Steal — we can UNDO any modifications if a Xact crashes before

FLUSH YT

Redo Logging

e Write log records to ensure durability after a system
crash:

O

O
O
O

<START T>: transaction T has begun

<COMMIT T>: T has committed

<ABORT T>: T has aborted

<T,X,v>: T has updated element X, and its new value was v

e |f T modifies X, then both <T,X,v> and <COMMIT T>
must be written to disk before FLUSH(X)

O

No-Steal, No-Force — we can REDO any modifications if a

Xact crashes before FLUSH

\Vy/at

Undo/Redo Logging Summary
« Undo logging:

e Uses Steal/Force policies
® Undoes all updates for running transactions
e Redo logging:
e Uses No Steal/No Force policies
® Redoes all updates for committed transactions

Aries Recovery - LSNs

LSN (Log Sequence Number): stored in each log record. Unique,
increasing, ordered identifier for each log record

flushedLSN: stored in memory, keeps track of the most recent log
record written to disk

pageLSN: LSN of the last operation to update the page (in memory
page may have a different pageLSN than the on disk page)
prevLSN: stored in each log record, the LSN of the previous record
written by the current record’s transaction

lastLSN: stored in the Xact Table, the LSN of the most recent log
record written by the transaction

recLSN: stored in the DPT, the log record that first dirtied the page
since the last checkpoint

e undoNextLSN: stored in CLR records, the LSN ofthenext

operation we need to undo for the current record’s transacW

Recovery Structures

e Transaction Table - stores information on active

transactions. Fields include
o Xid (Transaction ID)

o Status (Running, Committing, Aborting)
o lastLSN

e Dirty Page Table (DPT) - tracks dirty pages (pages

whose changes have not been flushed to disk)
o pagelD
o recLSN

Record Types

e Records have LSN, common fields include xid (transaction ID),
pagelD (for modified page), type

e UPDATE - write operation (SQL insert/update/delete). Also includes
fields for offset (where data change started), length (how much
data was changed), old_data (old version of changed data - used
for undos), new_data (updated version of data - used for redos)

e COMMIT - Xact is beginning committing process (ARIES: flush log
up to and including COMMIT record)

e ABORT - Xact is beginning aborting process (ARIES: begin writing

CLRs for undone UPDATES)
O Compensation Log Record (CLR) - indicates a given UPDATE has
been undone

o END . Xant is finishad (s in, finished " horting
\Vy/at

Record Types (cont.)
e Checkpoint Records

o Useful for ARIES analysis so we don'’t start from very beginning
of log

o Checkpoint serves as snapshot of Xact Table/DPT

o Fuzzy checkpoints - Xacts operating during checkpoint; Xact

O BEGIN CHECKPOINT - checkpoint start, earliest point Xact
Table/DPT could represent

O END CHECKPOINT - checkpoint end, holds Xact Table/DPT
snapshot

e Master Record - stores location of most recent
checkpoint for recovery purposes, usually LSN 0

\Vy/at

///////////////////

ATT: Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN
Buffer pool
Log tail

LogRecords

LSN

prevLSN
XID
type
pagelD
length
offset

before-image
after-image

ARIES: Overview

Data pages
each
with a
pageLSN

Master record

ARIES: Analysis (Part 1)

e Reconstructing Xact Table and DPT
e Need to know which transactions started/committed/aborted, which
pages dirtied
e Start from begin checkpoint log record (or start of log), go until end
of log
e On any record that is not an END record:
o Add the Xact to the Xact Table if not in table
o Set the lastLSN of the transaction to the current operation’s LSN
o If the record is a COMMIT or an ABORT record, change the status of
Xact to Committing/Aborting
e If the record is an UPDATE record and the page being updated is

not in the DPT, add the page to the DPT and set recLSN equal to
the LSN
Xact table. V?

ARIES: Analysis (Part 2)

e After going through the log, clean up the Xact Table

e For each Xact in the Xact Table:
o Write END records for committing Xacts. Because they’re
committing, they must be finished - preserve durability
o For running Xacts, change status to aborting and write ABORT
record - preserve atomicity since not finished

ARIES: Redo

e Redo updates and CLRs from the earliest recLSN in the DPT to get
back unflushed changes from before crash, unless:

o page notin DPT
m page on disk must be up to date, since we have no changes!
o recLSN of page > LSN
m no need to undo here: recLSN of page is first record that dirtied page, so
this change must have been flushed
o pageLSN (disk)>=LSN
m page LSN for disk (LSN of last record with change written to disk) is the
authoritative source for determining which changes have been applied in
disk
o Redo with after-image (redo state), update pageLSNs as you go

\Vy/at

ARIES: Undo

e Undo each Xact in the Xact Table
o Only UNDO updates (ignore CLRs)
Start at end of log and work backwards to the beginning
e For every UPDATE the undo phase undoes, write a corresponding

CLR to the log.
o undoNextLSN stores the LSN of the next operation to be undone for
that transaction (the prevLSN of the operation that you are undoing).
e Once you have undone all the operations for a transaction, write

the END record for that transaction to the log.

ARIES: Overall

e Why does redo happen before undo?

Oldest log rec. =

o If failure happens during redo or undo, next of Xact active A
recovery can pick up what previous recovery S crash
has left and continue Smallest
m E.g. Crash while writing CLRs in UNDO, we recLSN in dirtyj_
have to redo them page table 3
e When are transactions removed from the xact ~ afterAnalysis 2
table? :
o END log record :
. Last chkpt -
e When is a page removed from the DPT? : 1
o When thgt page ﬂushed. to disk (paggs aren’t CRASH H
necessarily flushed to disk on commit - no
A R U
force)
VIRGINIA

TECH.

Logging and Recovery

« Make sure you know *exactly” how recovery takes place,
and what is logged
— Practice, practice
— Check out problems in lectures, practice problems and hws
— Be comfortable with small conceptual questions

Workloads

o Online Transaction Processing (OLTP)
o Typically simple lookups with few joins or aggregations
o Characterized by high number of transactions by a high number of
users
o Modern “Web 2.0” applications with lots of user-generated content
and user interactions have OLTP workloads
o Online Analytical Processing (OLAP)
o Read-only queries and typically involve many joins and aggregations
o Used to support data-driven decision making
e OLTP and OLAP are served by separate databases

o Extract-transform-load (ETL) migrates data from OLTP systems to
OLAP systems

\Vy/at

OLAP

o Prioritizes in summarizing and extracting insights from petabytes of

data
o Performed on a separate data warehouse separate from OLTP’s
critical path
o Data warehouse is periodically updated with OLTP using ETL

(consolidate, clean, canonicalize data)
o EXx: run a chron job to update the data warehouse at the end of each

day

Next Week

Project Presentation

Good Luck!

