
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Data Mining and Warehousing

Today’s Topics

• OLAP: Online Analytical Processing
• Data Mining
• Cloud Database

Introduction

Traditional database systems are tuned to many, small, simple queries
New applications use fewer, more time-consuming, analytic queries
New architectures have been developed to handle analytic queries

efficiently

Problem
Given: multiple data sources
Find: patterns (classifiers, rules, clusters, outliers...)

sales(p-id, c-id, date, $price)

customers(c-id, age, income, ...)

NY

SF

???

BBURG

Data Ware-housing

Step 1: collect the data, in a single place (= Data Warehouse)
How?

A: Triggers/Materialized views
How often?

A: Depends
How about discrepancies / non-homegeneities?

A: Wrappers/Mediators

Step 2: collect counts. (DataCubes/OLAP)

The Data Warehouse

The most common form of data integration.
– Copy sources into a single DB (warehouse) and try to keep it up-to-

date.
– Usual method: periodic reconstruction of the warehouse, perhaps

overnight.
– Frequently essential for analytic queries.

OLTP

Most database operations involve On-Line Transaction
Processing (OTLP).
– Short, simple, frequent queries and/or modifications, each involving a

small number of tuples.
– Examples: Answering queries from a Web interface, sales at cash

registers, selling airline tickets.

OLAP

On-Line Application Processing (OLAP, or “analytic”) queries
are, typically:
– Few, but complex queries --- may run for hours.
– Queries do not depend on having an absolutely up-to-date database.

OLAP Examples

1. Amazon analyzes purchases by its customers to come up
with an individual screen with products of likely interest to
the customer.

2. Analysts at Wal-Mart look for items with increasing sales in
some region.
– Use empty trucks to move merchandise between stores.

Common Architecture

Databases at store branches handle OLTP.
Local store databases copied to a central warehouse overnight.
Analysts use the warehouse for OLAP.

Star Schemas

A star schema is a common organization for data at a
warehouse. It consists of:
– Fact table : a very large accumulation of facts such as sales.

• Often “insert-only.”
– Dimension tables : smaller, generally static information about the

entities involved in the facts.

Example: Star Schema

Suppose we want to record in a warehouse information about
every beer sale: the bar, the brand of beer, the drinker who
bought the beer, the day, the time, and the price charged.
The fact table is a relation:
Sales(bar, beer, drinker, day, time, price)

Example -- Continued

The dimension tables include information about the bar, beer,
and drinker “dimensions”:

Bars(bar, addr, license)
Beers(beer, manf)
Drinkers(drinker, addr, phone)

Visualization – Star Schema

Dimension Table (Beers) Dimension Table (etc.)

Dimension Table (Drinkers)Dimension Table (Bars)

Fact Table - Sales

Dimension Attrs. Dependent Attrs.

Dimensions and Dependent Attributes

Two classes of fact-table attributes:
1. Dimension attributes : the key of a dimension table.
2. Dependent attributes : a value determined by the dimension

attributes of the tuple.

Example: Dependent Attribute

price is the dependent attribute of our example Sales relation.
It is determined by the combination of dimension attributes:
bar, beer, drinker, and the time (combination of day and time-
of-day attributes).

Approaches to Building Warehouses

1. ROLAP = “relational OLAP”: Tune a relational DBMS to support
star schemas.

2. MOLAP = “multidimensional OLAP”: Use a specialized DBMS
with a model such as the “data cube.”

ROLAP Techniques
1. Bitmap indexes : For each key value of a dimension table (e.g.,

each beer for relation Beers) create a bit-vector telling which
tuples of the fact table have that value.

2. Materialized views : Store the answers to several useful
queries (views) in the warehouse itself.

Typical OLAP Queries

Often, OLAP queries begin with a “star join”: the natural join of the fact
table with all or most of the dimension tables.
Example:

SELECT *
FROM Sales, Bars, Beers, Drinkers
WHERE Sales.bar = Bars.bar AND
Sales.beer = Beers.beer AND
Sales.drinker = Drinkers.drinker;

Typical OLAP Queries --- (2)

The typical OLAP query will:
1. Start with a star join.
2. Select for interesting tuples, based on dimension data.
3. Group by one or more dimensions.
4. Aggregate certain attributes of the result.

Example: OLAP Query

For each bar in Blacksburg, find the total sale of each beer
manufactured by Anheuser-Busch.
Filter: addr = “Blacksburg” and manf = “Anheuser-Busch”.
Grouping: by bar and beer.
Aggregation: Sum of price.

Example: In SQL

SELECT bar, beer, SUM(price)
FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers

WHERE addr = ’Blacksburg’ AND
manf = ’Anheuser-Busch’

GROUP BY bar, beer;

Using Materialized Views

A direct execution of this query from Sales and the dimension
tables could take too long.
If we create a materialized view that contains enough
information, we may be able to answer our query much faster.

Example: Materialized View

Which views could help with our query?
Key issues:

1. It must join Sales, Bars, and Beers, at least.
2. It must group by at least bar and beer.
3. It must not select out Blacksburg bars or Anheuser-Busch beers.
4. It must not project out addr or manf.

Example --- Continued
Here is a materialized view that could help:
CREATE VIEW BABMS(bar, addr,

beer, manf, sales) AS
SELECT bar, addr, beer, manf,

SUM(price) sales

FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers

GROUP BY bar, addr, beer, manf;

Since bar -> addr and beer -> manf, there is no real
grouping. We need addr and manf in the SELECT.

Example --- Concluded

Here’s our query using the materialized view BABMS:
SELECT bar, beer, sales
FROM BABMS
WHERE addr = ’Blacksburg’ AND

manf = ’Anheuser-Busch’;

MOLAP and Data Cubes

Keys of dimension tables are the dimensions of a hypercube.
Example:
Sales(bar, beer, drinker, time, price)
– for the Sales data, the four dimensions are bar, beer, drinker, and time.
Dependent attributes (e.g., price) appear at the points of the
cube.

Visualization -- Data Cubes

price

bar

beer

drinker

Marginals

The data cube also includes aggregation (typically SUM) along
the margins of the cube.
The marginals include aggregations over one dimension, two
dimensions,…

Visualization --- Data Cube w/Aggregation

price

bar

beer

drinker

SU
M ov

er

all
Dr

ink
ers

Example: Marginals

Our 4-dimensional Sales cube includes the sum of price over
each bar, each beer, each drinker, and each time unit (perhaps
days).
It would also have the sum of price over all bar-beer pairs, all
bar-drinker-day triples,…

Marginals

Think of each dimension as having an additional value *.
A point with one or more *’s in its coordinates aggregates
over the dimensions with the *’s.
Example: (”Joe’s Bar”, ”Bud”, *, *) holds the sum, over all
drinkers and all time, of the Bud consumed at Joe’s.

Drill-Down

Drill-down = “de-aggregate” = break an aggregate into its
constituents.
Example: having determined that Joe’s Bar sells very few
Anheuser-Busch beers, break down his sales by particular A.-B.
beer.

Roll-Up

Roll-up = aggregate along one or more dimensions.
Example: given a table of how much Bud each drinker
consumes at each bar, roll it up into a table giving total amount
of Bud consumed by each drinker.

Example: Roll Up and Drill Down

Jim Bob Mary

Joe’s
Bar

45 33 30

Bull &
Bones

50 36 42

Blue
Chalk

38 31 40

$ of Anheuser-Busch by drinker/bar

112100133
MaryBobJim

$ of A-B / drinker

Roll
up
by Bar

354048Bud
Light

373145M’lob
402940Bud

MaryBobJim

$ of A-B Beers / drinker

Drill
down
by Beer

35

Structure of the Data Cube

CUBE(F) of fact table F is roughly === the Fact table (F) +
aggregations across all dimensions (i.e. marginals)
– Note CUBE(F) is a relation itself!

CUBE in SQL: Example

For our Sales example:
Sales(bar, beer, drinker, time, price)
CREATE MATERIALIZED VIEW SalesCube AS
SELECT bar, beer, drinker, time, SUM(price)

FROM Sales
GROUP BY bar, beer, drinker, time WITH CUBE;

Tuples in SalesCube

Tuples implied by the standard GROUP-BY:
(Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by
rolling-up the dimensions in GROUP-BY (==
marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Tuples in SalesCube

Tuples implied by the standard GROUP-BY:
(Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by
rolling-up the dimensions in GROUP-BY (==
marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Total spent by
John at Joes
on Apr 19.

Tuples in SalesCube

Tuples implied by the standard GROUP-BY:
(Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by
rolling-up the dimensions in GROUP-BY (==
marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Total spent by
John at Joes
ever.

Tuples in SalesCube

Tuples implied by the standard GROUP-BY:
(Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by
rolling-up the dimensions in GROUP-BY (==
marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Total spent by
everyone at
Joes ever.

Tuples in SalesCube

Tuples implied by the standard GROUP-BY:
(Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by
rolling-up the dimensions in GROUP-BY (==
marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Total spent by
everyone at
every bar
ever.

Compare ROLAP vs MOLAP
ROLAP Solution

CREATE VIEW BABMS(bar, addr,
beer, manf, sales) AS

SELECT bar, addr, beer, manf,
SUM(price) sales

FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers

GROUP BY bar, addr, beer, manf;

A specific view for a specific type of
query (note the join)

MOLAP (Data Cube) Solution

CREATE MATERIALIZED VIEW SalesCube AS
SELECT bar, beer, drinker, time,

SUM(price)
FROM Sales
GROUP BY bar, beer, drinker, time WITH

CUBE;

A generalized view which stores
marginals as well (no join)

Data Mining

Data mining is a popular term for techniques to
summarize big data sets in useful ways.
Examples:

1. Clustering all Web pages by topic.
2. Finding characteristics of fraudulent credit-card use.

Supervised Learning:
Decision Trees: Problem

Has heart
disease

Supervised Learning: Decision
Trees: Problem

??
What is the label for this new patient?

15 90 F …

Supervised Learning: Decision
Trees: Problem

??
What is the label for this new patient?

15 90 F …

Training
Data Set

Decision trees

Pictorially, we have

num. attr#1 (eg., ‘age’)

num. attr#2
(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

Decision trees

and we want to label ‘?’

num. attr#1 (eg., ‘age’)

num. attr#2
(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

?

Decision trees

so we build a decision tree:

num. attr#1 (eg., ‘age’)

num. attr#2
(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

?

50

40

Decision trees

so we build a decision tree:

age<50

Y

+ chol. <40

N

- ...

Y N

Conclusions

Data Mining: of high commercial interest (think BIG data)
DM = DB + Machine Learning + Stats.

Data Warehousing/OLAP: to get the data
Tree Classifiers
Association Rules

….. (like clustering etc.)

Summary

• For OLAP, column-oriented storage trumps row-oriented storage
– Many tricks beyond splitting columns up
– compression, late materialization, redundant layouts, efficient write

processing
• For OLTP, the costs of many random accesses for updating

columns makes a columnar layout not worth it
– Hence OLTP systems look more traditional, and typically opt for row-

oriented storage
• Many systems are now opting for hybrid layouts to try to support

both OLAP and OLTP in the same system

Cloud Database

AWS Athena

AWS Athena

AWS CloudWatch Insight

AWS Glue

Monolithic Architecture Serverless Architecture

Reading and Next Class
• Data Mining and Warehousing
• Cloud Database
• Next: Final Review

