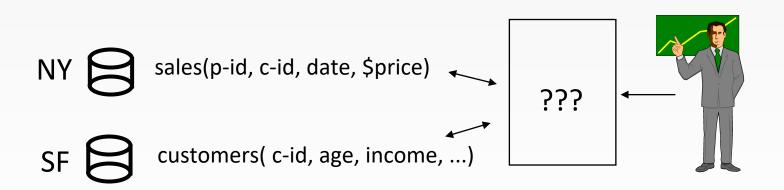
CS 4604: Introduction to Database Management Systems

Data Mining and Warehousing

Virginia Tech CS 4604 Sprint 2021 Instructor: Yinlin Chen

Today's Topics

- OLAP: Online Analytical Processing
- Data Mining
- Cloud Database


Introduction

Traditional database systems are tuned to many, small, simple queries New applications use fewer, more time-consuming, *analytic* queries New architectures have been developed to handle analytic queries efficiently

Problem

Given: multiple data sources Find: patterns (classifiers, rules, clusters, outliers...)

BBURG

Data Ware-housing

Step 1: collect the data, in a single place (= Data Warehouse) How?

A: Triggers/Materialized views How often?

A: Depends

How about discrepancies / non-homegeneities?

A: Wrappers/Mediators

Step 2: collect counts. (DataCubes/OLAP)

The Data Warehouse

The most common form of data integration.

- Copy sources into a single DB (*warehouse*) and try to keep it up-todate.
- Usual method: periodic reconstruction of the warehouse, perhaps overnight.
- Frequently essential for analytic queries.

OLTP

Most database operations involve *On-Line Transaction Processing* (OTLP).

- Short, simple, frequent queries and/or modifications, each involving a small number of tuples.
- Examples: Answering queries from a Web interface, sales at cash registers, selling airline tickets.

OLAP

On-Line Application Processing (OLAP, or "analytic") queries are, typically:

- Few, but complex queries --- may run for hours.
- Queries do not depend on having an absolutely up-to-date database.

OLAP Examples

- 1. Amazon analyzes purchases by its customers to come up with an individual screen with products of likely interest to the customer.
- 2. Analysts at Wal-Mart look for items with increasing sales in some region.
 - Use empty trucks to move merchandise between stores.

Common Architecture

Databases at store branches handle OLTP. Local store databases copied to a central warehouse overnight. Analysts use the warehouse for OLAP.

Star Schemas

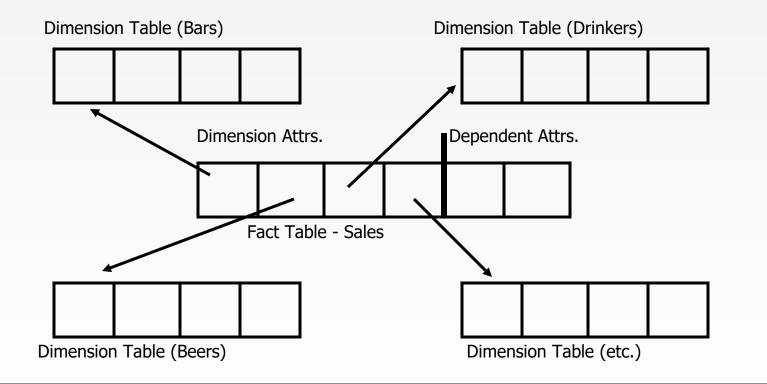
A *star schema* is a common organization for data at a warehouse. It consists of:

- Fact table : a very large accumulation of facts such as sales.
 - Often "insert-only."
- Dimension tables : smaller, generally static information about the entities involved in the facts.

Example: Star Schema

Suppose we want to record in a warehouse information about every beer sale: the bar, the brand of beer, the drinker who bought the beer, the day, the time, and the price charged. The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)


Example -- Continued

The dimension tables include information about the bar, beer, and drinker "dimensions":

- Bars(bar, addr, license)
- Beers(beer, manf)
- Drinkers(drinker, addr, phone)

Visualization – Star Schema

Dimensions and Dependent Attributes

Two classes of fact-table attributes:

- 1. Dimension attributes : the key of a dimension table.
- 2. Dependent attributes : a value determined by the dimension attributes of the tuple.

Example: Dependent Attribute

price is the dependent attribute of our example Sales relation. It is determined by the combination of dimension attributes: bar, beer, drinker, and the time (combination of day and timeof-day attributes).

Approaches to Building Warehouses

- 1. ROLAP = "relational OLAP": Tune a relational DBMS to support star schemas.
- 2. MOLAP = "multidimensional OLAP": Use a specialized DBMS with a model such as the "data cube."

ROLAP Techniques

- 1. Bitmap indexes : For each key value of a dimension table (e.g., each beer for relation Beers) create a bit-vector telling which tuples of the fact table have that value.
- *2. Materialized views* : Store the answers to several useful queries (views) in the warehouse itself.

Typical OLAP Queries

Often, OLAP queries begin with a "star join": the natural join of the fact table with all or most of the dimension tables.

Example:

SELECT *

FROM Sales, Bars, Beers, Drinkers

```
WHERE Sales.bar = Bars.bar AND
```

```
Sales.beer = Beers.beer AND
```

```
Sales.drinker = Drinkers.drinker;
```


Typical OLAP Queries ---- (2)

The typical OLAP query will:

- 1. Start with a star join.
- 2. Select for interesting tuples, based on dimension data.
- 3. Group by one or more dimensions.
- 4. Aggregate certain attributes of the result.

Example: OLAP Query

For each bar in Blacksburg, find the total sale of each beer manufactured by Anheuser-Busch. Filter: addr = "Blacksburg" and manf = "Anheuser-Busch". Grouping: by bar and beer. Aggregation: Sum of price.

Example: In SQL

SELECT bar, beer, SUM(price)
FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers
WHERE addr = 'Blacksburg' AND
manf = 'Anheuser-Busch'
GROUP BY bar, beer;

Using Materialized Views

A direct execution of this query from Sales and the dimension tables could take too long.

If we create a materialized view that contains enough information, we may be able to answer our query much **faster**.

Example: Materialized View

Which views could help with our query? Key issues:

- 1. It must join Sales, Bars, and Beers, at least.
- 2. It must group by at least bar and beer.
- 3. It must not select out Blacksburg bars or Anheuser-Busch beers.
- 4. It must not project out addr or manf.

Example ---- Continued

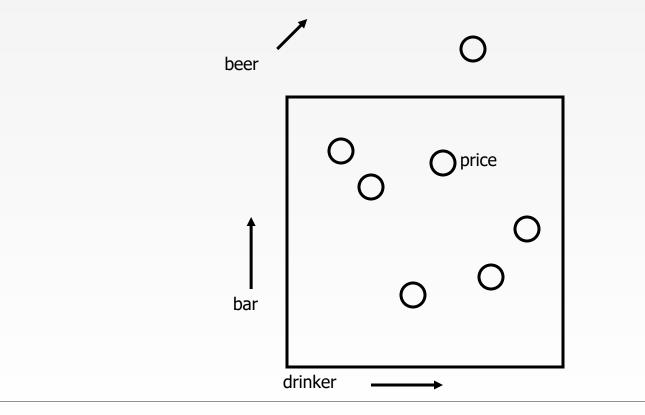
Here is a materialized view that could help: CREATE VIEW BABMS (bar, addr, beer, manf, sales) AS SELECT bar, addr, beer, manf, SUM(price) sales FROM Sales NATURAL JOIN Bars NATURAL JOIN Beers GROUP BY bar, addr, beer, manf; Since bar -> addr and beer -> manf, there is no real grouping. We need addr and manf in the SELECT.

Example ---- Concluded

Here's our query using the materialized view BABMS: SELECT bar, beer, sales FROM BABMS WHERE addr = 'Blacksburg' AND manf = 'Anheuser-Busch';

MOLAP and Data Cubes

Keys of dimension tables are the dimensions of a hypercube. Example:


Sales(bar, beer, drinker, time, price)

- for the Sales data, the four dimensions are bar, beer, drinker, and time.

Dependent attributes (e.g., price) appear at the points of the cube.

Visualization -- Data Cubes

Marginals

The data cube also includes aggregation (typically SUM) along the margins of the cube.

The *marginals* include aggregations over one dimension, two dimensions,...

Visualization --- Data Cube w/Aggregation beer SUM Over Ners price bar drinker

Example: Marginals

Our 4-dimensional Sales cube includes the sum of price over each bar, each beer, each drinker, and each time unit (perhaps days).

It would also have the sum of price over all bar-beer pairs, all bar-drinker-day triples,...

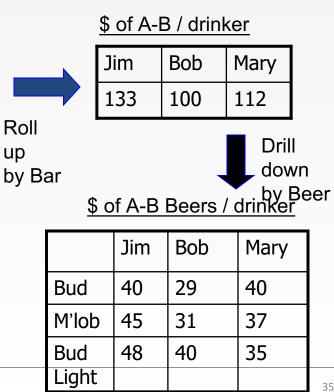
Marginals

- Think of each dimension as having an additional value *. A point with one or more *'s in its coordinates aggregates over the dimensions with the *'s.
- Example: ("Joe's Bar", "Bud", *, *) holds the sum, over all drinkers and all time, of the Bud consumed at Joe's.

Drill-Down

- *Drill-down* = "de-aggregate" = break an aggregate into its constituents.
- Example: having determined that Joe's Bar sells very few Anheuser-Busch beers, break down his sales by particular A.-B. beer.

Roll-Up


Roll-up = aggregate along one or more dimensions. Example: given a table of how much Bud each drinker consumes at each bar, roll it up into a table giving total amount of Bud consumed by each drinker.

Example: Roll Up and Drill Down

\$ of Anheuser-Busch by drinker/bar

	Jim	Bob	Mary
Joe's	45	33	30
Bar			
Bull & Bones	50	36	42
Blue Chalk	38	31	40

Structure of the Data Cube

CUBE(F) of fact table F is *roughly* === the Fact table (F) + aggregations across all dimensions (i.e. marginals)

- Note CUBE(F) is a relation itself!

CUBE in SQL: Example

For our Sales example: Sales(bar, beer, drinker, time, price) CREATE MATERIALIZED VIEW SalesCube AS SELECT bar, beer, drinker, time, SUM(price) FROM Sales GROUP BY bar, beer, drinker, time WITH CUBE;

Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by
rolling-up the dimensions in GROUP-BY (==
marginals, NULL == *). E.g:
(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 200000.00)

Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00) Total spent by
(Joes, NULL, John, NULL, 200.00) John at Joes
(Joes, NULL, NULL, NULL, 200000.00) on Apr 19.
(NULL, NULL, NULL, NULL, 200000.00)

Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00) Total spent by
(Joes, NULL, John, NULL, 200.00) John at Joes
(Joes, NULL, NULL, NULL, 200000.00) ever.
(NULL, NULL, NULL, NULL, 200000.00)

Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00) Total spent by
(Joes, NULL, John, NULL, 200.00) everyone at
(Joes, NULL, NULL, NULL, 200000.00) Joes ever.
(NULL, NULL, NULL, NULL, 200000.00)

Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)

And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:

(Joes, NULL, John, 4/19/13, 10.00) Total spent by (Joes, NULL, John, NULL, 200.00) everyone at (Joes, NULL, NULL, NULL, 200000.00) every bar (NULL, NULL, NULL, NULL, 200000.00) ever.

Compare ROLAP vs MOLAP

ROLAP Solution

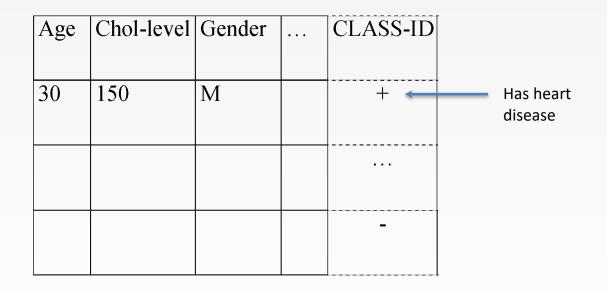
CREATE VIEW BABMS(bar, addr, beer, manf, sales) AS SELECT bar, addr, beer, manf, SUM(price) sales FROM Sales NATURAL JOIN Bars NATURAL JOIN Beers GROUP BY bar, addr, beer, manf;

MOLAP (Data Cube) Solution

CREATE MATERIALIZED VIEW SalesCube AS SELECT bar, beer, drinker, time, SUM(price) FROM Sales GROUP BY bar, beer, drinker, time WITH CUBE;

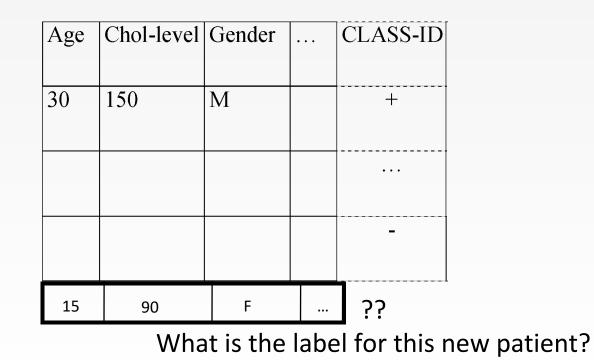
A specific view for a specific type of query (note the join)

A generalized view which stores marginals as well (no join)

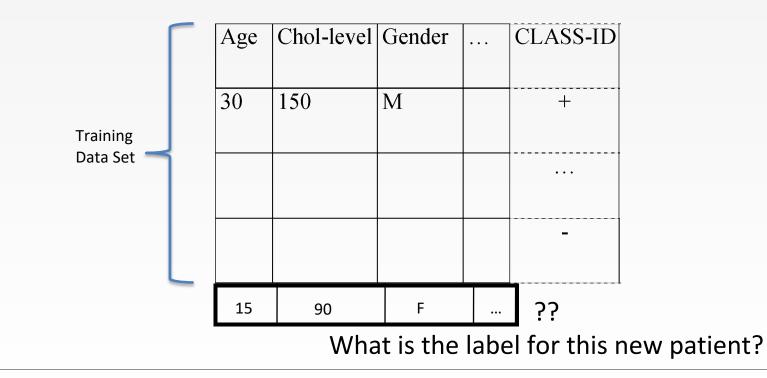

Data Mining

Data mining is a popular term for techniques to summarize big data sets in useful ways. Examples:

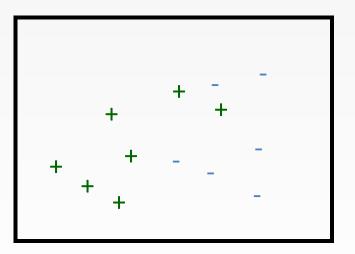
- 1. Clustering all Web pages by topic.
- 2. Finding characteristics of fraudulent credit-card use.



Supervised Learning: Decision Trees: Problem

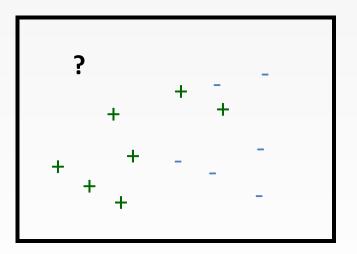


Supervised Learning: Decision Trees: Problem


Supervised Learning: Decision Trees: Problem

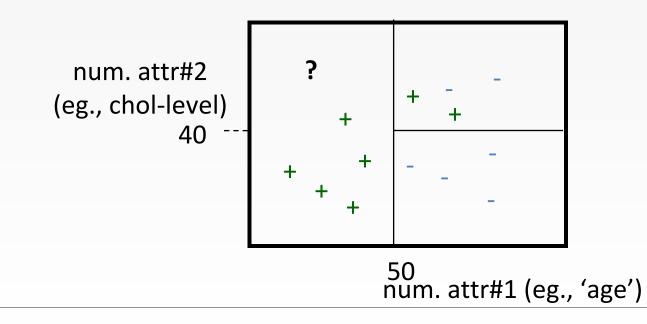
Pictorially, we have

num. attr#2 (eg., chol-level)

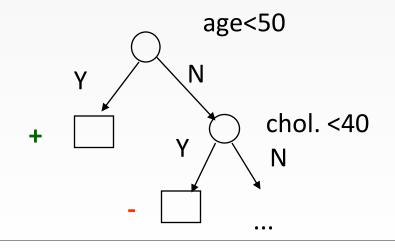


num. attr#1 (eg., 'age')

and we want to label '?'


num. attr#2 (eg., chol-level)

num. attr#1 (eg., 'age')



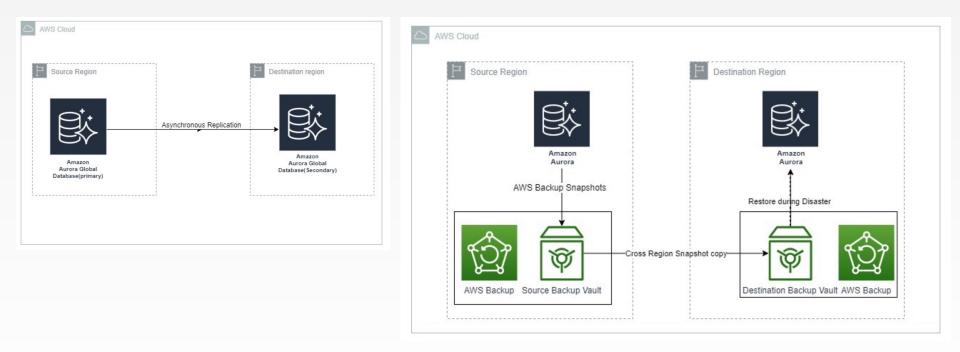
so we build a decision tree:

so we build a decision tree:

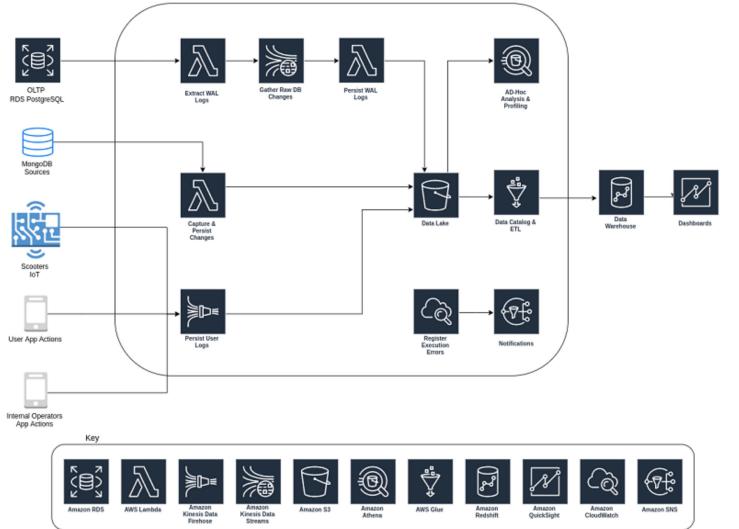
Conclusions

Data Mining: of high commercial interest (think BIG data) DM = DB + Machine Learning + Stats.

Data Warehousing/OLAP: to get the data Tree Classifiers Association Rules (like clustering etc.)



Summary


- For OLAP, column-oriented storage trumps row-oriented storage
 - Many tricks beyond splitting columns up
 - compression, late materialization, redundant layouts, efficient write processing
- For OLTP, the costs of many random accesses for updating columns makes a columnar layout not worth it
 - Hence OLTP systems look more traditional, and typically opt for roworiented storage
- Many systems are now opting for hybrid layouts to try to support both OLAP and OLTP in the same system

Cloud Database

AWS Athena

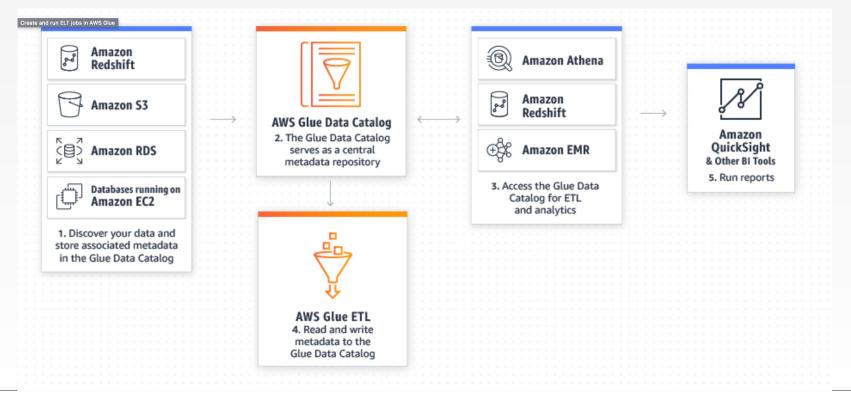
Athena Query editor Saved	d queries History D)ata sou	irces Workgr	oup : primary Setti	ngs	Tutorial	Help \	What's new
Data source	Connect data source		New query 1	⊙ New query 2 ⊙ +				0
AwsDataCatalog Database	Ŧ	È	1 select * 2 3	from fixityoutput				
fixitycost	•							
Filter tables and views			Run query	Save as Create V (Run time: 4.79 seconds, Data scanned: 4.16 MB)		Format	query	Clear
▼ Tables (1)	Create table		Use Ctrl + Enter te	o run guery, Ctrl + Space to autocomplete				
✓ fixityoutput	1		eee eer ' Entor o					
bucket (string) key (string) elapsed (int)			Results					D 🖌
etag (string) filesize (bigint)			▲ bucket ▼	key 🐨	elapsed	I ≖ etag ≖		
state (string)			1 fixity-test	Ms1998_022_Young/Ms1998_022_Box1/Ms1998_022_B1_Folder17/Ms1998_022_B001_F017_001_Pro_Ms/Archival/Ms1998_022_B001_F017_001_Pro_Ms_015.tif	1391	"e4d2f3	057c0ba39	9f4d12b68
status (string) restorestatus (string)			2 fixity-test	Ms1998_022_Young/Ms1998_022_Box1/Ms1998_022_B1_Folder11/Ms1998_022_B001_F011_001_Pro_Ms/Archival/Ms1998_022_B001_F011_001_Pro_Ms_021.tif	776	"075394	8a9c5731	552bc24fa
restorerequest (array <string>)</string>			3 fixity-test	Ms1998 022 Young/Ms1998 022 Box1/Ms1998 022 B1 Folder11/Ms1998 022 B001 F011 001 Pro Ms/Access/Ms1998 022 B001 F011 001 Pro Ms 226.tif		"381f59	ob5853341	f7c34f68el
algorithm (string) chunksize (bigint)			4 fixity-test	Ms1998 022 Young/Ms1998 022 Box1/Ms1998 022 B1 Folder11/Ms1998 022 B001 F011 001 Pro Ms/Archival/Ms1998 022 B001 F011 001 Pro Ms 174.lif	859	"fb178a	od9f33e99	82b168bf
bytesread (bigint)			5 fixity-test		2355	"6febf01	0cf2cf2fd5	509849724
nextbytestart (bigint) computed (string)			6 fixity-test	Box1/Box1 Folder4 BeckyPeterson/Access/00029.tif	1903	"aa8544	d8034f94:	3e6fd6740
compared (string)			7 fixity-test	Ms1998_022_Young/Ms1998_022_B0x1/Ms1998_022_B1_Folder15/Ms1998_022_B001_F015_001_Pro_Ms/Archival/Ms1998_022_B001_F015_001_Pro_Ms_001.tif	981	"78987b	d293d38d	180fb0d41
comparedresult (string)			8 fixity-test	Ms1998_022_Young/Ms1998_022_Box1/Ms1998_022_B1_Folder11/Ms1998_022_B001_F011_001_Pro_Ms/Archival/Ms1998_022_B001_F011_001_Pro_Ms_128.tif	678	"4f820f3	43563a12	2d12f0aa8
storechecksumontagging (boolean) tagupdated (boolean)			9 fixity-test	Ms1998_022_Young/Ms1998_022_Box1/Ms1998_022_B1_Folder11/Ms1998_022_B001_F011_001_Pro_Ms/Access/Ms1998_022_B001_F011_001_Pro_Ms_240.tif	705	"6f8297	6c8a26601	bd2f63998
timestamp (timestamp)			10 fixity-test	Ms1998_022_Young/Ms1998_022_Box1/Ms1998_022_B1_Folder18/Ms1998_022_B001_F018_001_Pro_Ms/Archival/Ms1998_022_B001_F018_001_Pro_Ms_009.tif	4290	"9c57b0	27e9f2faf2	2b7ee301a
▼ Views (0)	Create view		11 fixity-test	Ms1998_022_Young/Ms1998_022_B0x1/Ms1998_022_B1_Folder17/Ms1998_022_B001_F017_001_Pro_Ms/Access/Ms1998_022_B001_F017_001_Pro_Ms_032.tif	634	"6c9125	c1f8089ea	af5598823
You have not created any views. To create a			12 fixity-test	Ms1998 022 Young/Ms1998 022 Box1/Ms1998 022 B1 Folder14/Ms1998 022 B001 F014 001 Pro Ms/Archival/Ms1998 022 B001 F014 001 Pro Ms 017.tif	600	"391a9e	27f5fd4af	1eb6ce6f5
click "Create view from query"	now, run a query and		13 fixity-test	Ms1998_022_Young/Ms1998_022_Box1/Ms1998_022_B1_Folder18/Ms1998_022_B001_F018_001_Pro_Ms/Archival/Ms1998_022_B001_F018_001_Pro_Ms_011.tif	3165	"e93f5a	3a9a346a	0c253260

AWS Athena

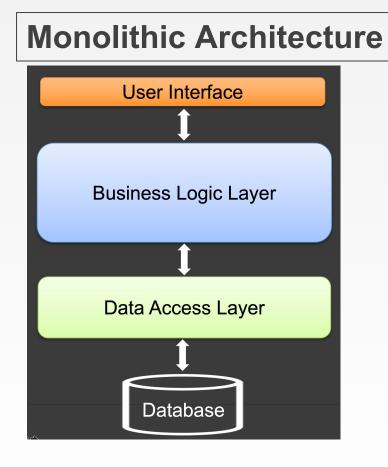
Athena Query editor Saved queries History Data sources Workgroup : primary

Settings Tutorial Help What's new

Results												D 💉
→ bucket →	key 🔻				elapsed 👻 etag 💌		filesize 💌 state 💌	status	 restorest 	tatus 👻 restorerequest 👻	algorithm 👻	chunksize 👻 bytesread 👻
021.tif 776	"0753948a9c5731552bc24fa18d2c90e0"	4217752	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4217752	4217752	0753948a9c5731552bc24fa18d2c90e0	object-etag	MATCHED	true	true	2020-07-16 20:49:24.35
:26.tif 862	"381f59bb585334f7c34f68eb3fc77c41"	4057576	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4057576	4057576	381f59bb585334f7c34f68eb3fc77c41	object-etag	MATCHED	true	true	2020-07-16 20:49:21.11
174.tif 859	"fb178abd9f33e9982b168bfc3d0eaf68"	4299300	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4299300	4299300	fb178abd9f33e9982b168bfc3d0eaf68	object-etag	MATCHED	true	true	2020-07-16 20:49:27.03
78.tif 2355	"6febf010cf2cf2fd5098497248117653"	4417976	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4417976	4417976	6febf010cf2cf2fd5098497248117653	object-etag	MATCHED	true	true	2020-07-16 20:49:22.00
128.tif 678	"4f820f343563a12d12f0aa8c1b37d767"	4481240	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4481240	4481240	4f820f343563a12d12f0aa8c1b37d767	object-etag	MATCHED	true	true	2020-07-16 20:49:25.26
:40.tif 705	"6f82976c8a2660bd2f63998c636a01ee"	4184532	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4184532	4184532	6f82976c8a2660bd2f63998c636a01ee	object-etag	MATCHED	true	true	2020-07-16 20:49:23.54
)32.tif 634	"6c9125c1f8089eaf55988231aca49138"	1734380	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 1734380	1734380	6c9125c1f8089eaf55988231aca49138	object-etag	MATCHED	true	true	2020-07-16 20:49:35.68
017.tif 600	"391a9e27f5fd4af1eb6ce6f5176fe7b7"	1939696	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 1939696	1939696	391a9e27f5fd4af1eb6ce6f5176fe7b7	object-etag	MATCHED	true	true	2020-07-16 20:49:30.93
84.tif 936	"4eca4a1f1f2d616bb30debd64ed56c05"	4104852	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4104852	4104852	4eca4a1f1f2d616bb30debd64ed56c05	object-etag	MATCHED	true	true	2020-07-16 20:49:22.13
004.tif 745	"fa785fe010e19051e95403cceea0f155"	3389120	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 3389120	3389120	fa785fe010e19051e95403cceea0f155	object-etag	MATCHED	true	true	2020-07-16 20:49:40.80
038.tif 609	"5ae8b8c6b629da6768d82a8c9dacc922"	2134552	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 2134552	2134552	5ae8b8c6b629da6768d82a8c9dacc922	object-etag	MATCHED	true	true	2020-07-16 20:49:45.67
139.tif 774	"4a896fbe15096d748a0a07081e2731b7"	4637820	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4637820	4637820	4a896fbe15096d748a0a07081e2731b7	object-etag	MATCHED	true	true	2020-07-16 20:49:25.62
215.tif 1160	"f33d9d02b6461ce22ca508440cf4fb0a"	4140784	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4140784	4140784	f33d9d02b6461ce22ca508440cf4fb0a	object-etag	MATCHED	true	true	2020-07-16 20:49:28.98
:27.tif 744	"03c293a6370a901dec363f5eb2f221b2"	4025452	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4025452	4025452	03c293a6370a901dec363f5eb2f221b2	object-etag	MATCHED	true	true	2020-07-16 20:49:22.90
59.tif 1036	"76f12bdfd41650ad9aa9763e8e7589d8"	4258820	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4258820	4258820	76f12bdfd41650ad9aa9763e8e7589d8	object-etag	MATCHED	true	true	2020-07-16 20:49:18.95
11.tif 733	"4fe4dc55a90c036a59962e89997c4523"	4456988	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4456988	4456988	4fe4dc55a90c036a59962e89997c4523	object-etag	MATCHED	true	true	2020-07-16 20:49:20.61
020.tif 929	"6c609995d5d6a0d5ec3145df43e3c1d1"	4198464	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4198464	4198464	6c609995d5d6a0d5ec3145df43e3c1d1	object-etag	MATCHED	true	true	2020-07-16 20:49:22.22
10.tif 2390	"97bf14d25c6b79377c422c8790f40cd7"	4944104	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4944104	4944104	97bf14d25c6b79377c422c8790f40cd7	object-etag	MATCHED	true	true	2020-07-16 20:49:20.94
39.tif 1876	"0111bfc5dda595558d3d2ec7bdffb54f"	4222988	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4222988	4222988	0111bfc5dda595558d3d2ec7bdffb54f	object-etag	MATCHED	true	true	2020-07-16 20:49:18.56
)35.tif 774	"803b6df4cbeb1cdcacd1d44b8f38b895"	5903804	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 5903804	5903804	803b6df4cbeb1cdcacd1d44b8f38b895	object-etag	MATCHED	true	true	2020-07-16 20:49:42.75
D65.tif 693	"cc0de1d89cb46efb451cbff7b107b5ef"	4348368	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4348368	4348368	cc0de1d89cb46efb451cbff7b107b5ef	object-etag	MATCHED	true	true	2020-07-16 20:49:22.99
219.tif 646	"17c4541edfb9273e8d0260986d673d9c"	4305260	ChecksumValidation COMPLETED COMPLETED	[{"tier":"Bulk","days":"1"}] md5	21474836480 4305260	4305260	17c4541edfb9273e8d0260986d673d9c	object-etag	MATCHED	true	true	2020-07-16 20:49:28.58



AWS CloudWatch Insight


aws Services ▼	Q Search for services, features, marketplace products, and docs [Option+S] D A Yinlin Chen ▼ N. Virginia
CloudWatch ×	CloudWatch > CloudWatch Logs > Logs Insights
Dashboards Alarms In alarm Insufficient data OK Billing Logs Log groups Insights 	Select log group(s) 5m 30m 1h 3h 12h Custom (16h) /aws/batch/job X Clear 1 fields (etimestamp, @message 9 parse (emessage "summary: String = *" as summary 3 filter summary like "PagesWithLinks" 4 sort (etimestamp desc Run query Save History
 Metrics Explorer New 	
▼ Events Rules	Logs Visualization Add to dashboard ⓒ
Event Buses ServiceLens Service Map Traces Container Insights New	Showing 998 of 998 records matched () Hide histogram 20,284,936 records (2.2 GB) scanned in 11.0s () 1,839,069 records/s (200.4 MB/s)
Resources	07 PM 08 PM 09 PM 10 PM 11 PM Thu 25 01 AM 02 AM 03 AM 04 AM 05 AM 06 AM 07 AM 08 AM 09 AM 10 AM
Performance monitoring	# etimestamp emessage summary > 1 2021-03-2570139317 summary String = CDX:125.6691543321PagesWithLinks:897.5226507 CDX:125.6691543321PagesWithLinks:897.522650781 CDX:125.6691543321PagesWithLinks:897.522650781 > 2 2021-03-25701337.48 summary String = CDX:125.425643731PagesWithLinks:897.522650781 CDX:125.425643731PagesWithLinks:874.464511474 > 3 2021-03-25701337.1 summary String = CDX:125.911768471PagesWithLinks:887.432927. CDX:125.911768471PagesWithLinks:887.432927855 > 4 2021-03-25701362.1 summary: String = CDX:126.9096017351PagesWithLinks:887.192927855 CDX:126.9096017351PagesWithLinks:887.192927855 > 5 2021-03-25701362.1 summary: String = CDX:126.929033591PagesWithLinks:878.7584255 CDX:126.9096017351PagesWithLinks:878.75842555 > 6 2021-03-25701362.8 summary: String = CDX:126.91996821PagesWithLinks:776.20613791 CDX:126.929033591PagesWithLinks:776.20613791 > 6 2021-03-25701362.8
▼ Favorites + Add a dashboard	7 2021-03-25T01:35:17 summary: String = (DX:102.57925977/PagesWithLinks:726.04894947 (DX:102.57925977/PagesWithLinks:726.04894947 8 2021-03-25T01:35:10 summary: String = (DX:107.412546462/PagesWithLinks:752.619504662) (DX:107.412546462/PagesWithLinks:726.04894947 9 2021-03-25T01:35:10 summary: String = (DX:107.412546462/PagesWithLinks:744.074575 (DX:108.659221843/PagesWithLinks:744.074575421 2021-03-25T01:34:59 summary: String = (DX:127.018653886/PagesWithLinks:740.659261843/PagesWithLinks:744.074575421 10 2021-03-25T01:34:18 summary: String = (DX:127.018653886/PagesWithLinks:900.629645 (DX:127.018653886/PagesWithLinks:900.629645172 DX:125.825652285/PagesWithLinks:740.6494968 11 2021-03-25T01:34:18 summary: String = (DX:108.297303066/PagesWithLinks:740.56499468 (DX:108.297303066/PagesWithLinks:740.56499468


AWS Glue

Serverless Architecture

Reading and Next Class

- Data Mining and Warehousing
- Cloud Database
- Next: Final Review

