
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Logging and Recovery 2: ARIES

Today’s Topics

• ARIES
– Log Sequence Number (LSN)
– Fuzzy checkpoints
– Recovery algorithm

Recap

• Undo / Redo Logging
• Write-Ahead Log, for loss of volatile storage, with

incremental updates (STEAL, NO FORCE) and
checkpoints

• On recovery: undo uncommitted; redo committed
transactions

crash!
● Desired state after system

restarts:
– T1 & T3 should be durable.
– T2, T4 & T5 should be aborted

(effects not seen).

T1
T2

T3
T4
T5

Abort
Commit

Commit

Motivation

▪ Atomicity:
–Transactions may abort (“Rollback”).

▪ Durability:
–What if DBMS stops running? (Causes?)

• Algorithms for Recovery and Isolation Exploiting
Semantics

• With full details on
– fuzzy checkpoints
– recovery algorithm

C. Mohan (IBM)

Today: ARIES

Overview of ARIES
• A recovery algorithm is designed to

implement a steal, no-force approach
• Start from a checkpoint

• found via master record.
• Three phases:

• Analysis - Figure out which Xacts committed
since checkpoint, which failed.

• REDO all actions.
• (repeat history)

• UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at
crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH
A R U

Checkpoint
• Idea: save the state the database periodically so that we

don’t need to always process the entire log
• During a checkpoint:

– Stop accepting new transactions
– Wait until all current transactions complete (i.e., commit / abort)
– Flush log to disk
– Flush all dirty pages to disk
– Write a <CKPT> log record, flush log again
– At this point, changes by committed txns have persisted to disk,

and aborted txns have rolled back
– Resume transactions

Write on the log:
▪ the id-s of active transactions and
▪ the id-s (ONLY!) of dirty pages

(rest: obviously made it to the disk!)

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

before

crash

checkpoints

Undo Recovery with Checkpointing

Fuzzy Checkpointing

• Problem with checkpointing: database freezes during
checkpoint
– Not accepting any new transactions!

• Would like to checkpoint while database still processes
incoming txns

• Idea: fuzzy checkpointing
– Save state of all txns and page statuses

• Some txns can be running and dirty pages not flushed yet!
• Need new data structures to store such info

Fuzzy Checkpointing: Idea

• Keep track of:
1. txn states (running, committing, etc)
2. dirty pages and which txn’s action first caused page to become

dirty
• Save 1 and 2 to disk at checkpoint
• At recovery:

– Re-create 1 and 2 from the log
– Re-create running txns and dirty pages in memory
– Replay rest of the log

Fuzzy Checkpointing: idea
Specifically, write to log:

– begin_checkpoint record: indicates start of ckpt
– end_checkpoint record: Contains current Xact table and

dirty page table. This is a `fuzzy checkpoint’:
• Other Xacts continue to run; so these tables accurate only as

of the time of the begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness of

checkpoint limited by oldest unwritten change to a dirty page.

solved both problems of non-fuzzy ckpts!!

Fuzzy Checkpointing: idea

And:
–Store LSN of most recent chkpt record on disk (master record)

• Data Structures
–LSN and Page LSN
–Dirty page table
–Transaction table

Fuzzy Checkpointing: Data Structures

• Each log record has a Log Sequence Number (LSN)
– A unique integer that’s increasing (e.g., line number)

• Each data page has a Page LSN
– The LSN of the most recent log record that updated that page

Log Sequence Number (LSN)

<T1 start>
<T2 start>
<T4 start>
<T4, A, 10, 20>
<T1 commit>
<T4, B, 30, 40>
<T3 start>
<T2 commit>
<T3commit>
~~~~ CRASH ~~~~

E.g., undo T4 - it is faster, if we have 
a linked list of the T4 log records



Possible log record types:
▪ Update, Commit, Abort
▪ Checkpoint (for log maintenance)
▪ Compensation Log Records 

(CLRs)
– for UNDO actions

▪ End (end of commit or abort)

prevLSN

txnID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Log Records



Fuzzy Checkpointing: Data Structures 

#1) Transaction Table
▪ In-memory table
▪ Lists all txn’s and their statuses
▪ Contains 

–txnID
–Status: running/committing/aborting
– lastLSN: most recent update LSN written by 

txn (if active)



Fuzzy Checkpointing: Data Structures 
#2) Dirty Page Table:
• One entry per dirty page currently in buffer 

pool
• Contains recoveryLSN (recLSN) -- the LSN 

of the log record which first caused the page 
to become dirty



• Store both old and new values in update records 
• New field prevLSN = LSN of the previous log record written 

by this txnID
• Actions of a transaction form a linked list backwards in time 

Writing log records 



pageLSN

Log records
flushed to disk

“Log tail”
in RAM

flushedLSN

WAL & the Log

▪ Each data page contains a pageLSN.
– The LSN of the most recent update to that page.

▪ System keeps track of flushedLSN.
– The max LSN flushed so far.

▪ WAL:  For a page i to be written must flush 
log at least to the point where:
pageLSNi ≤   flushedLSN



▪ Can we un-pin the gray page?

pageLSN

Log records
flushed to 
disk

“Log tail”
in RAM

flushedLSN

▪ A: yes

WAL & the Log



pageLSN

Log records
flushed to 
disk

“Log tail”
in RAM

flushedLSN

WAL & the Log

▪ Can we un-pin the blue page?

▪ A: no



▪ Series of reads & writes, followed by commit or abort
–The recovery manager sees page-level reads/writes
–We will assume that disk write is atomic.

• In practice, additional details to deal with non-atomic writes.

▪ STEAL, NO-FORCE buffer management, with Write-Ahead 
Logging
▪ Update, Commit, Abort log records written to log tail as we go
▪ Transaction Table and Dirty Page Table being kept current
▪ PageLSNs updated in buffer pool
▪ Log tail flushed to disk periodically in background
▪ And flushedLSN changed as needed

▪ Buffer manager stealing pages subject to WAL

Normal Execution of an Xact



Fuzzy Checkpointing: Protocol 

• Write a <BEGINCKPT> to log
• Flush log to disk
• Continue normal operation
• When DPT and Transactions 

tables are written to the disk, 
write <END CKPT> to log

• Flush log to disk



Transaction Commit

▪ Write commit record to log.
▪ All log records up to Xact’s commit record are flushed to 

disk.
–Guarantees that flushedLSN ≥ lastLSN.
–Note that log flushes are sequential, synchronous writes to disk.
–Many log records per log page.

▪ Commit() returns.
▪ Write end record to log.



LSN prevLSN  tid  type        item  old  new
10     NULL     T1  update    X       30   40
....
50     10            T1 update    Y        22   25
...
63     50            T1 commit
...

68     63            T1 end

dbms flushes 
log records
+ some 
record-keeping

Example



Simple Transaction Abort
• For now, consider an explicit abort of a Xact.

• No crash involved.
• We want to “play back” the log in reverse order, 

UNDOing updates.
• Get lastLSN of Xact from Xact table.
• Write an Abort log record before starting to rollback operations 
• Can follow chain of log records backward via the prevLSN field.
• Write a “CLR” (compensation log record) for each undone 

operation.
Note: CLRs are a different type of log record



LSN prevLSN  tid  type        item  old  new
10     NULL     T2  update    Y       30   40
...
63     10            T2 abort

Abort - Example



LSN prevLSN  tid  type        item  old  new
10     NULL     T2  update    Y       30   40
...
63     10            T2 abort
...
72     63            T2 CLR   (LSN 10)
...
78     72            T2 end

compensating
log
record

Abort - Example



LSN prevLSN  tid  type        item  old  new undoNextLSN
10     NULL     T2  update    Y       30   40
...
63     10            T2 abort
...
72     63            T2 CLR        Y       40   30   NULL
...
78     72            T2 end

Abort - Example



Compensation Log Record (CLR)
▪ A CLR record has all the fields of an ‘update’ record
▪ CLR has one extra field: undonextLSN
▪ points to the next LSN to undo 

▪ You continue logging while you UNDO!!
▪ CLR contains REDO info
▪ CLRs never Undone 
▪ Undo needn’t be idempotent (>1 UNDO won’t happen)
▪ But they might be Redone when repeating history
▪ (=1 UNDO guaranteed)

▪ At end of all UNDOs, write an “end” log record



Abort - algorithm:

▪ First, write an ‘abort’ record on log and
▪ Play back updates, in reverse order: for each update

–write a CLR log record
–restore old value

▪ at end, write an ‘end’ log record

Note: CLR records never need to be undone



The Big Picture:  What’s Stored Where

DB

Data pages
each with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords LOG

master record
LSN of most 
recent checkpoint

update
CLR

undoNextLSNCLR



Crash Recovery: Big Picture
• Start from a checkpoint (found via master

record)
• Three phases

• Analysis - Figure out which Xacts committed 
since checkpoint, which failed.

• REDO all actions (repeat history) before crash 
and bring DBMS to the exact state right when it 
crashed

• UNDO effects of failed Xacts when crash 
occurred. Log all undo changes to ensure 
changes are not undone

• Notice: relative ordering of A, B, C may vary!

Oldest log 
rec. of Xact 
active at 
crash

Smallest 
recLSN in 
dirty page 
table after 
Analysis

Last chkpt

CRASH
A R U

A

B

C



ARIES Recovery 
Recovery from a system crash is done in 3 passes: 
1. Analysis pass

– Recreate list of dirty pages and active transactions 
2. Redo pass

– Redo all operations, even for those that were incomplete 
before crash 

– Goal is to replay DB to the state at the moment of the crash 
3. Undo pass 

– Unroll effects of all incomplete transactions at time of crash 
– Log changes during undo in case of another crash during undo



Analysis Phase 

• Goal 
– Determine point in log (firstLSN) where to start REDO 
– Determine set of dirty pages when crashed 
– Identify active transactions when crashed 

• Approach 
– Rebuild transactions table and dirty pages table 
– Recover these from the last checkpoint in the log 
– Compute: firstLSN = smallest of all pages’ recoveryLSN

• This is the earliest point that a write was made to buffer pool that 
hasn’t persisted yet 



▪ Re-establish knowledge of state at 
checkpoint.
–via transaction table and dirty page 

table stored in the checkpoint

Oldest log 
rec. of Xact 
active at 
crash

Smallest 
recLSN in 
dirty page 
table after 
Analysis

Last chkpt

CRASH
A R U

A

B

C

Recovery: The Analysis Phase



▪ Scan log forward from checkpoint.
– End record: Remove Xact from Xact table.
–All Other records: 

• Add Xact to Xact table
• set lastLSN=LSN, 
• on commit, change Xact status to ‘C’
• otherwise, with status ‘U’ (=candidate for undo)

–also, for Update records: If page P not in Dirty 
Page Table (DPT), 
• add P to DPT, set its recLSN=LSN.

Oldest log 
rec. of Xact 
active at 
crash

Smallest 
recLSN in 
dirty page 
table after 
Analysis

Last chkpt

CRASH
A R U

A

B

C

firstLSN = smallest of all pages’ 
recoveryLSN = oldest change 

Recovery: The Analysis Phase



▪ At end of Analysis:
–transaction table says which xacts were active at time of 

crash.
–DPT says which dirty pages might not have made it to disk

Recovery: The Analysis Phase



Example: Analysis Phase

PageID recLSN
Dirty Page Table

Txn Table

TxID LastLSN Status



Example: Analysis Phase

PageID recLSN

P5 20

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 20 U



Example: Analysis Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 20 U

T2 30 U



Example: Analysis Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 20 U

T2 30 C



Example: Analysis Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 20 U

T2 30 C



Example: Analysis Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 20 U

T3 60 U



Example: Analysis Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 70 U

T3 60 U



Phase 2: REDO
• Goal: repeat History to reconstruct state at crash:

–Reapply all updates (even of aborted Xacts!), redo CLRs.
–(and try to avoid unnecessary reads and writes!)

▪ Scan forward from log rec containing smallest recLSN in 
DPT

▪ For each update log record or CLR  with a given LSN, 
REDO the action unless:  
–Affected page is not in the Dirty Page Table, or
–Affected page is in D.P.T., but has recLSN > LSN, or
–pageLSN (in DB) ≥ LSN. (this last case requires I/O)



Phase 2: REDO (cont’d)

▪ To REDO an action:
–Reapply logged action.
–Set pageLSN to LSN.  No additional logging, no forcing!

▪ at the end of REDO phase, write ‘end’ log records for all 
xacts with status ‘C’,

▪ and remove them from transaction table

▪ What happens if system crashes during REDO ?
▪ We REDO again! Each REDO operation is idempotent: doing it 

twice is the as doing it once



Scenarios When We Do Not REDO 

Given an update log record…
• Affected page is not in the Dirty Page Table

• This page was flushed to DB, removed from DPT before checkpoint
• Then DPT flushed to checkpoint

• Affected page is in DPT, but has DPT recLSN > LSN  
• This page was flushed to DB, removed from DPT before checkpoint
• Then this page was referenced again and reinserted in DPT with larger 

recLSN
• pageLSN (in DB) >= LSN. (this last case requires DB I/O)

• This page was updated again and flushed to DB after this log record



Example: Redo Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 70 U

T3 60 U

start



Goal: Undo all transactions that were active at the time of 
crash (‘loser xacts’)

▪ That is, all xacts with ‘U’ status on the xact table of the 
Analysis phase

▪ Process them in reverse LSN order
▪ using the lastLSN’s to speed up traversal
▪ and issuing CLRs

Phase 3: UNDO



Phase 3: UNDO

ToUndo={lastLSNs of ‘loser’ Xacts}
Repeat:
–Choose (and remove) largest LSN among ToUndo.
– If this LSN is a CLR and undonextLSN==NULL
•Write an End record for this Xact.

– If this LSN is a CLR, and undonextLSN != NULL
• Add undonextLSN to ToUndo

–Else this LSN is an update.  Undo the update, write a CLR, add 
prevLSN to ToUndo.

Until ToUndo is empty.



Q: What happens if system crashes during UNDO? 
A: We do not UNDO again! Instead, each CLR is a REDO 
record: we simply redo the undo 

Phase 3: UNDO



LSN         LOG

00
05
10
20
30
40
45
50
60

suppose that after end of 
analysis phase we have:
xact table

xid   status   lastLSN
T32   U
T41   U

prevLSNs undo
in reverse
LSN order

Phase 3: UNDO - illustration



Example: Undo Phase

PageID recLSN

P5 20

P3 30

Dirty Page Table

Txn Table

TxID LastLSN Status

T1 70 U

T3 60 U

start



Example: Undo Phase
Txn Table

TxID LastLSN Status

T1 70 U

T3 60 U

start

ToUndo={70, 60}
LSN 70, ToUndo={60, 20}
LSN 60, undo change on P3 and adds a CLR, ToUndo={20}
LSN 20, undo change on P3 and adds a CLR



RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

Example of Recovery



Questions

▪ Q1: After the Analysis phase, which are the ‘loser’ 
transactions?

▪ Q2: UNDO phase - what will it do?



Questions

▪ Q1: After the Analysis phase, which are the ‘loser’ 
transactions?

▪ A1: T2 and T3
▪ Q2: UNDO phase - what will it do?
▪ A2: undo ops of LSN 60, 50, 20



Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

RAM

Example: Crash During Restart!



Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

RAM

Example: Crash During Restart!



Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

RAM

Example: Crash During Restart!



RAM

Example: Crash During Restart!



Questions

▪ Q3: After the Analysis phase, which are the ‘loser’ 
transactions?

▪ Q4: UNDO phase - what will it do?



Questions

▪ Q3: After the Analysis phase, which are the ‘loser’ 
transactions?

▪ A3: T2 only
▪ Q4: UNDO phase - what will it do?
▪ A4: follow the string of prevLSN of T2, exploiting 

undoNextLSN



Example: Crash During Restart!



Questions

• Q5: show the log, after the recovery is finished:



Example: Crash During Restart!



Additional Crash FAQs to Understand
Q: What happens if system crashes during Analysis?
A: Nothing serious. RAM state lost, need to start over next time.

Q: What happens if the system crashes during REDO?
A: Nothing bad. Some REDOs done, and we’ll detect that next time.

Q: How do you limit the amount of work in REDO?
A: Flush asynchronously in the background. Even “hot” pages!

Q: How do you limit the amount of work in UNDO?
A: Avoid long-running Xacts.



Summary of Logging/Recovery
▪ Recovery Manager guarantees Atomicity & Durability
▪ Use WAL to allow STEAL/NO-FORCE w/o sacrificing 

correctness
▪ LSNs identify log records; linked into backwards chains 

per transaction (via prevLSN)
▪ pageLSN allows comparison of data page and log 

records
▪ And several other subtle concepts: undoNextLSN, 

recLSN, etc.



ARIES - main ideas:
–WAL (write ahead log), STEAL/NO-

FORCE
–fuzzy checkpoints (snapshot of dirty 

page ids)
–redo everything since the earliest 

dirty page; undo ‘loser’ transactions
–write CLRs when undoing, to survive 

failures during restarts

let OS
do its best

idempotency

Summary of Logging/Recovery



Summary of Logging/Recovery

• Checkpointing:  Quick way to limit the amount of log to 
scan on recovery 

• Recovery works in 3 phases:
• Analysis: Forward from checkpoint.
• Redo: Forward from oldest recLSN.
• Undo: Backward from end to first LSN of oldest Xact alive 

(running, aborting) after Redo.
• Upon Undo, write CLRs.
• Redo “repeats history”: Simplifies the logic!



Reading and Next Class

• ARIES: Ch18
• Next: Data Mining and Warehousing


