
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Logging and Recovery 1

Today’s Topics

• Write-Ahead Log (WAL)
• Write-Ahead Log: ARIES

Transactions - ACID
Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

recovery

concurrency
control

• Recovery Manager
• Atomicity: undoing the actions of xacts that do not commit
• Durability: making sure that all committed xacts survive system crashes

and media failures
• Also to rollback transactions that violate consistency

Motivation
• Atomicity:

• Transactions may abort (“Rollback”).
• Durability:

• What if DBMS stops running?

• Desired state after system restarts:
• T1 & T3 should be durable.
• T2, T4 & T5 should be aborted (effects not seen).

• Questions:
• Why do transactions abort?
• Why do DBMSs stop running?

crash!
T1
T2
T3
T4
T5

Abort
Commit

Commit

Atomicity: Why Do Transactions Abort?

• User/Application explicitly aborts
• Failed Consistency check

• Integrity constraint violated
• Deadlock
• System failure prior to successful commit

Transactions and SQL

• Use transactions when the set of database
operations you are making needs to be atomic

• SQL Basics
• BEGIN: start a transaction block
• COMMIT: commit the current transaction
• ROLLBACK: abort the current transaction

SQL Savepoints
• SAVEPOINT: define a new savepoint within the current transaction

• SAVEPOINT <name>
• RELEASE SAVEPOINT <name>

• Makes it as if the savepoint never existed
• ROLLBACK TO SAVEPOINT <name>

• Statements since the savepoint are rolled back

BEGIN;
INSERT INTO table1 VALUES ('yes1');
SAVEPOINT sp1;

INSERT INTO table1 VALUES
('yes2');

RELEASE SAVEPOINT sp1;
SAVEPOINT sp2;

INSERT INTO table1 VALUES ('no');
ROLLBACK TO SAVEPOINT sp2;
INSERT INTO table1 VALUES ('yes3');

COMMIT;

Durability: Why do DBMSs stop running?

• Operator Error
• Trip over the power cord
• Type the wrong command

• Configuration Error
• Insufficient resources: disk space
• File permissions, etc.

• Software Failure
• DBMS bugs, security flaws, OS bugs

• Hardware Failure
• Media failures: disk is corrupted
• Server crashes

Classification of failures:

logical errors (e.g., div. by 0)
system errors (e.g., deadlock)
system crash (e.g., power failure – volatile storage
(memory) is lost)
disk failure (non-volatile storage is lost)

frequent; ‘cheap’

rare; expensive

Problem definition
• Assumption: Concurrency control is in effect

– Strict 2PL, in particular
• Assumption: Updates are happening “in place”

– i.e., data is modified in buffer pool and pages in DB are
overwritten

• Transactions are not done on “private copies” of the data

• Challenge: Buffer Manager
– Changes are performed in memory
– Changes are then written to disk
– This discontinuity complicates recovery

Recap: Buffer Manager

Primitive Operations

• READ(X,t)
– copy value of data item X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to data item X

• FETCH(X)
– read page containing data item X to memory buffer

• FLUSH(X)
– write page containing data item X to disk

Running Example

Crash!

A = 16
B = 8

Crash!

A = 16
B = 16

Crash!

Problematic
Crashes

Solution: Logging (Write-Ahead Log)
• Log: append-only file containing log records

– This is usually on a different disk, separate from the data pages, allowing
recovery

• For every update, commit, or abort operation
– Sequential write a log record
– Multiple transactions run concurrently, log records are interleaved
– Minimal info written to log: pack multiple updates in a single log page

• After a system crash, use log to:
– Redo transactions that did commit

• Redo ensures Durability
– Undo transactions that didn’t commit

• Undo ensures Atomicity

Solution: Logging (Write-Ahead Log)

• Log: append-only file containing log records
• Also performance implications:

– Log is sequentially written (faster) as opposed to page
writes (random I/O)

– Log can also be compact, only storing the “delta” as
opposed to page writes (write a page irrespective of
change to the page)

• Pack many log records into a log page

Two Important Logging Decisions
• Decision 1: STEAL or NO-STEAL
• Impacts ATOMICITY and UNDO
• Steal: allow the buffer pool (or another txn) to “steal” a pinned

page of an uncommitted txn by flushing to disk
• No-steal: disallow above
• If we allow “Steal”, then need to deal with uncommitted txn edits

appearing on disk
– To ensure Atomicity we need to support UNDO of uncommitted txns

• Oppositely, “No-steal” has poor performance (pinned pages limit
buffer replacement)
– But no UNDO required. Atomicity for free.

Two Important Logging Decisions
• Decision 2: FORCE or NO-FORCE
• Impacts DURABILITY and REDO
• Force: ensure that all updates of a transaction is “forced” to disk

prior to commit
• No-force: no need to ensure
• If we allow “No-force”, then need to deal with committed txns not

being durable
– To ensure Durability we need to support REDO of committed txns

• Oppositely, “Force” has poor performance (lots of random I/O to
commit)
– But no REDO required, Durability for free.

Buffer Management summary

Force

No Force

No Steal Steal

UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

No UNDO
REDO

No UNDO
No REDO

UNDO
No REDO

UNDO Logging (Force and Steal)
• Log records
• <START T>

– transaction T has begun

• <COMMIT T>
– T has committed

• <ABORT T>
– T has aborted

• <T, X, v>
– T has updated element X, and its old value was v

We UNDO by setting B=8 and A=8

Nothing to UNDO: Log contains COMMIT

Undo-Logging (Steal/Force) Rules

• U1: If T modifies X, then <T,X,v> must be written to disk before
FLUSH(X)
– Want to record the old value before the new value replaces the

old value permanently on disk
• U2: If T commits, then FLUSH(X) must be written to disk before

<COMMIT T>
– Want to ensure that all changes written by T have been reflected

before T is allowed to commit

• Hence: FLUSHes are done early, before the transaction
commits

STEAL

FORCE

Redo Logging (NO-FORCE and NO-STEAL)

• One minor change to the undo log:
• <T, X, v>= T has updated element X, and its new

value is v

We REDO by setting A=16 and B=16

Nothing need to do

Redo-Logging Rules

• R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
FLUSH(X)

• Hence: FLUSHes are done late

No STEAL

Comparison Undo/Redo
• Undo logging:

– Data page FLUSHes must be done early
– If <COMMIT T> is seen, T definitely has written all its

data to disk (hence, don’t need to undo)
• Redo logging

– Data page FLUSHes must be done late
– If <COMMIT T> is not seen, T definitely has not

written any of its data to disk (hence there is no dirty
data on disk)

Pro/Con Comparison Undo/Redo
• Undo logging: (Steal/Force)

– Pro: Less memory intensive: flush updated data pages as soon as log
records are flushed, only then COMMIT

– Con: Higher latency: forcing all dirty buffer pages to be flushed prior to
COMMIT can take a long time

• Redo logging: (No Steal/No Force)
– Con: More memory intensive: cannot flush data pages unless COMMIT

log has been flushed.
– Pro: Lower latency: don’t need to wait until data pages are flushed to

COMMIT

Write-Ahead Logging for UNDO/REDO
• Log: An ordered list of log records to allow REDO/UNDO

• Log record contains:
• <TXID, pageID, offset, length, old data, new data>

• and additional control info

Force

No Force

No Steal Steal

UNDO
REDO

No UNDO
REDO

No UNDO
No REDO

UNDO
No REDO

Write-Ahead Logging (WAL)

• The Write-Ahead Logging Protocol:
1. Must force the log record for an update before the

corresponding data page gets to the DB disk.
2. Must force all log records for a Xact before commit.

• I.e., transaction is not committed until all of its log records
including its “commit” record are on the stable log.

• #1 (with UNDO info) helps guarantee Atomicity.
• #2 (with REDO info) helps guarantee Durability.
• This allows us to implement Steal/No-Force

Example
Records are on disk
for updates, they are copied in memory
and flushed back on disk, at the discretion of the O.S.!

read(X)
X=X+1
write(X)

disk
main
memory

5
}page

buffer{
5

Example – part 2

read(X)
X=X+1
write(X)

disk
main
memory

6
5

Example – part 3

read(X)
X=X+1
write(X)

disk

6
5

Example – part 4

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6
X

3
5

Y
4

Example – part 5

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6
X

3
5

Y
3

Example: W.A.L.

<T1 start>
<T1, X, 5, 6>
<T1, Y, 4, 3>
<T1 commit> (or <T1 abort>)

W.A.L. - intro

in general: transaction-id, data-item-id, old-value, new-value
(assumption: each log record is immediately flushed on stable
store)
each transaction writes a log record first, before doing the
change
when done, write a <commit> record & exit

W.A.L. - incremental updates

- log records have ‘old’ and ‘new’ values.
- modified buffers can be flushed at any time
Each transaction:
- writes a log record first, before doing the

change
- writes a ‘commit’ record (if all is well)
- exits

W.A.L. - incremental updates

Q: how, exactly?
– value of W on disk?
– value of W after recov.?
– value of Z on disk?
– value of Z after recov.?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
<T1 commit>

before

crash

W.A.L. - incremental updates

Q: how, exactly?
– value of W on disk?
– value of W after recov.?
– value of Z on disk?
– value of Z after recov.?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

W.A.L. - incremental updates

Q: recovery algo?
A:
– redo committed xacts
– undo uncommitted ones
(more details: soon)

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>

before

crash

W.A.L. - check-points

Idea: periodically, flush
buffers

Q: should we write
anything on the log?

Q: what if the log is huge?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
...
<T500, B, 10, 12>

before

crash

W.A.L. - check-points

Q: should we write
anything on the log?

A: yes!
Q: how does it help us?

<T1 start>
<T1, W, 1000, 2000>
<T1, Z, 5, 10>
<checkpoint>
...
<checkpoint>
<T500, B, 10, 12>

before

crash

W.A.L. - check-points

Q: how does it help us?
A=? on disk?
A=? after recovery?
B=? on disk?
B=? after recovery?
C=? on disk?
C=? after recovery?

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

before

crash

W.A.L. - check-points

Q: how does it help us?
I.e., how is the recovery
algorithm?

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

crash

before

W.A.L. - check-points

Q: how is the recovery
algorithm?
A:

- undo uncommitted
xacts (eg., T500)
- redo the ones
committed after the last
checkpoint (eg., none)

<T1 start>
...
<T1 commit>
...
<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>
<T500 start>
<T500, A, 200, 400>
<checkpoint>
<T500, B, 10, 12>

crash

before

W.A.L. - w/ concurrent xacts

Assume: strict 2PL

W.A.L. - w/ concurrent xacts

Log helps to rollback
transactions (eg., after a
deadlock + victim
selection)

Eg., rollback(T500): go
backwards on log;
restore old values

<T1 start>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

<T500 abort>

before

W.A.L. - w/ concurrent xacts

-recovery algo?
- undo uncommitted ones
- redo ones committed

after the last checkpoint

<T1 start>

...

<T300 start>

...

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

before

W.A.L. - w/ concurrent xacts

-recovery algo?
- undo uncommitted

ones
- redo ones

committed after
the last checkpoint

time

T1

T2

T3

T4

ck ck crash

W.A.L. - w/ concurrent xacts

-recovery algo?
specifically:

- find latest
checkpoint

- create the ‘undo’
and ‘redo’ lists

time

T1

T2

T3

T4

ck ck crash

W.A.L. - w/ concurrent xacts

time

T1

T2

T3

T4

ck ck crash <T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint >
<T3 start>
<T2 commit>
<checkpoint >
<T3 commit>

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint >
<T3 start>
<T2 commit>
<checkpoint >
<T3 commit>

<checkpoint> should
also contain a list of
‘active’ transactions
(= not commited yet)

W.A.L. - w/ concurrent xacts

<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

<checkpoint> should
also contain a list of
‘active’ transactions

time

T1

T2

T3

T4

ck ck crash

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

Recovery algo:
- build ‘undo’ and ‘redo’ lists
- scan backwards, undoing ops
by the ‘undo’-list transactions
- go to most recent checkpoint
- scan forward, re-doing ops by
the ‘redo’-list xacts

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

Recovery algo:
- build ‘undo’ and ‘redo’ lists
- scan backwards, undoing ops
by the ‘undo’-list transactions
- go to most recent checkpoint
- scan forward, re-doing ops by
the ‘redo’-list xacts
Actual ARIES algorithm: more
clever (and more complicated)
than that

swap?

W.A.L. - w/ concurrent xacts
<T1 start>
<T2 start>
<T4 start>
<T1 commit>
<checkpoint {T4, T2}>
<T3 start>
<T2 commit>
<checkpoint {T4,T3} >
<T3 commit>

Observations/Questions
1) what is the right order to
undo/redo?
2) during checkpoints: assume
that no changes are allowed by
xacts (otherwise, ‘fuzzy
checkpoints’)
3) recovery algo: must be
idempotent (ie., can work, even
if there is a failure during
recovery!
4) how to handle buffers of
stable storage?

Observations

ARIES (coming up soon) handles all issues:
1) redo everything; undo after that
2) ‘fuzzy checkpoints’
3) idempotent recovery
4) buffer log records;
– flush all necessary log records before a page is

written
– flush all necessary log records before a x-act commits

Conclusions

Write-Ahead Log, for loss of volatile storage,
with incremental updates (STEAL, NO FORCE)
and checkpoints
On recovery: undo uncommitted; redo committed
transactions.

Reading and Next Class

• Logging and Recovery Part 1: Ch 16, 18
• Next: Logging and Recovery Part 2: Ch 18

