
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

NoSQL databases

Today’s Topics

• NoSQL
– Key-Value database
– Document database

Two Classes of Relational Database App

• OLTP (Online Transaction Processing)
– Queries are simple lookups: 0 or 1 join

• E.g., find customer by ID and their orders
– Many updates. E.g., insert order, update payment
– Consistency is critical: we need transactions

• OLAP (Online Analytical Processing)
– aka “Decision Support”
– Queries have many joins, and group-by’s

• E.g., sum revenues by store, product, clerk, date
– No updates

NoSQL Motivation

• Originally motivated by Web 2.0 applications
– E.g., Facebook, Amazon, Instagram, etc.
– Startups need to scaleup from 10 to 107 clients quickly

• Needed: very large scale OLTP workloads
• Give up on consistency, give up OLAP
• NoSQL: reduce functionality

– Simpler data model
– Very restricted updates

App+Web server Database Servers

HTTPs Connection

Scale up Scale up

Replicating the Database
• Scale up through partitioning – “sharding”

– Partition the database across many machines in a cluster
– Database now fits in main memory
– Queries spread across these machines
– Can increase throughput
– Easy for writes but reads become expensive!

• Scale up through replication
– Create multiple copies of each database partition
– Spread queries across these replicas
– Can increase throughput and lower latency
– Can also improve fault-tolerance
– Easy for reads but writes become expensive!

• Consistency is much harder to enforce

Relational Model à NoSQL

• Relational DB: difficult to replicate/partition
– Partition: we maybe forced to join across servers
– Replication: local copy has inconsistent versions
– Consistency is hard in both cases

• NoSQL: simplified data model
– Given up on functionality
– Application must now handle joins and consistency

Relational Model vs NoSQL
• Relational DB (ACID)

– Atomicity
– Consistency
– Isolation
– Durability

• NoSQL (BASE)
– Basic Availability

• Application must handle partial failures itself
– Soft State

• DB state can change even without inputs
– Eventually Consistency

• DB will “eventually” become consistent

What’s NoSQL?

• The misleading term “NoSQL” is short for “Not Only
SQL”.

• Non-relational, schema-free, non-(quite)-ACID – More
on ACID transactions later in class

• Horizontally scalable, distributed, easy replication
support

• Simple API

NoSQLs

Key-value (K-V) Stores

• Data model: (key, value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key, value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– Multi way-way replication: e.g., key k stored at h1(k), h2(k), h3(k)

• Amazon DynamoDB, Voldemort, Memcached, …

Key-Value Stores Internals

• Partitioning:
– Use a hash function h
– Store every (key, value) pair on server h(key)

• Replication:
– Store each key on (say) three servers
– On update, propagate change to the other servers; eventual

consistency
– Issue: when an app reads one replica, it may be stale

• Usually: combine partitioning + replication

Amazon DynamoDB Demo

https://console.aws.amazon.com/

Document Database
• Designed to store and query data as JSON-like

documents
• Flexible schema and indexing, powerful ad hoc queries,

and analytics over collections of documents
• Enable developers to store and query data in a database

by using the same document-model format they use in
their application code

• The document model works well with use cases like
– Catalogs, user profiles, and content management systems

where each document is unique and evolves over time

Document Database

• MongoDB
• Amazon DocumentDB (with MongoDB compatibility)
• SimpleDB
• CouchDB
• …

Motivation

• In Key-Value stores, the Value is often a very complex
object
– Key = ‘2010/7/1’, Value = [all flights that date]

• Better: value to be structured data
– JSON or XML or Protobuf
– Called a “document” but it’s just data

MongoDB Data Model
MongoDB DBMS

Database Database

Collection Relation

Document Row/Record

Field Column

Document = {..., field: value, ...}
Where value can be:
• Atomic
• A document
• An array of atomic values
• An array of documents

{qty:1, status:"D", size:{h:14,w:21}, tags: ["a", "b"] },

• JSON data model
• Internally stored as BSON = Binary JSON
• Client libraries can directly operate on this

natively

MongoDB Data Model
• Can use JSON schema validation

– Some integrity checks, field typing and ensuring the presence of
certain fields

• Special field in each document: _id
– Primary key
– Will also be indexed by default
– If it is not present during ingest, it will be added
– Will be first attribute of each doc.
– This field requires special treatment during projections

JSON - Overview

• JavaScript Object Notation = lightweight text- based
open standard designed for human- readable data
interchange. Interfaces in C, C++, Java, Python, Perl,
etc.

• The filename extension is .json
• Semi structured data

– Does not have the same level of organization and predictability
of structured data

– The data does not reside in fixed fields or records, but does
contain elements that can separate the data into various
hierarchies

Nested JSON Object Example

{
"name":"John",
"age":30,
"cars": {
"car1":"Ford",
"car2":"BMW",
"car3":"Fiat"

}
}

JSON vs Relational

• Relational data model
– Rigid flat structure (tables)
– Schema must be fixed in advanced
– Binary representation: good for performance, bad for exchange
– Query language based on Relational Algebra

• Semi-structured data model / JSON
– Flexible, nested structure (trees)
– Does not require predefined schema ("self-describing”)
– Text representation: good for exchange, bad for performance
– Most common use: Language API; query languages emerging

JSON Types

• Primitive: number, string, Boolean, null
• Object: collection of name-value pairs:

– {“name1”: value1, “name2”: value2, ...}
– “name” is also called a “key”

• Array: ordered list of values:
– [obj1, obj2, obj3, ...]

JSON Syntax
https://www.json.org/

Avoid Using Duplicate Keys

• The standard allows them, but many implementations
don’t

{"id":"07",
"title": "Databases",
"author": "Garcia",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia",

"Ullman",
"Widom"]

}

JSON Semantics: Tree presentation

Intro to Semi-structured Data

• JSON is self-describing
• Schema elements become part of the data

– Relational schema: person(name, phone)
– In JSON “person”, “name”, “phone”

are part of the data, and are repeated many times
• JSON is more flexible

– Schema can change per tuple

Storing JSON in RDBMS
• Using JSON as a data type provided by RDBMSs

– Declare a column that contains either json or jsonb (binary)
– CREATE TABLE people (person json) [or jsonb for binary]

• Some databases support
– E.g. MySQL:

• SELECT * FROM students
WHERE JSON_EXTRACT(student, '$.age') = 12;

• Translate JSON documents into relations

Mapping Relational Data to JSON

Mapping Relational Data to JSON

Mapping Relational Data to JSON
Many-many relationships are more difficult to represent

Mapping Semi-structured Data to Relations

Mapping Semi-structured Data to Relations

Mapping Semi-structured Data to Relations

Why Semi-Structured Data?

• Semi-structured data works well as data exchange formats
– i.e., exchanging data between different apps
– Examples: XML, JSON, Protobuf (protocol buffers)

• Systems use them as a data model for DBs:
– SQL Server supports for XML-valued relations
– CouchBase, MongoDB, Snowflake: JSON
– Dremel (BigQuery): Protobuf

Query Languages for Semi-Structured Data
• XML: XPath, XQuery (see textbook Ch 27)

– Supported inside many RDBMS (SQL Server, DB2, Oracle)
– Several standalone XPath/XQuery engines

• Protobuf: SQL-ish language (Dremel) used internally by
google, and externally in BigQuery

• JSON:
– CouchBase: N1QL
– AsterixDB: SQL++ (based on SQL)
– MongoDB: has a pattern-based language
– JSONiq: http://www.jsoniq.org/

MongoDB Query Language (MQL)
• Input = collections, output = collections
• Three main types of queries in the query language

– Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type
queries

– Aggregation: A bit of a misnomer; a general pipeline of operators
• Can capture Retrieval as a special case
• But worth understanding Retrieval queries first...

– Updates
• All queries are invoked as

– db.collection.operation1(...).operation2(...)...
• collection: name of collection

– Unlike SQL which lists many tables in a FROM clause, MQL is
centered around manipulating a single collection

Some MQL Principles : Dot (.) Notation

• "." is used to drill deeper into nested docs/arrays
• Recall that a value could be atomic, a nested document, an array of

atomics, or an array of
• nested documents
• Examples:

– "instock.qty” à qty field within the instock field
• Applies only when instock is a nested doc or an array of nested docs

– If instock is a nested doc, then qty could be nested field
– If instock is an array of nested docs, then qty could be a nested field within documents

in the array
– "instock.1” à second element within the instock array

• Element could be an atomic value or a nested document
– "instock.1.qty"e à qty field within the second document within the instock

array
• Note: such dot expressions need to be in quotes

Some MQL Principles : Dollar ($) Notation

• $ indicates that the string is a special keyword
– E.g., $gt, $lte, $add, $elemMatch, ...

• Used as the "field" part of a "field : value" expression
• So if it is a binary operator, it is usually done as:

– { LOperand : { $keyword : ROperand }}
– e.g., {qty : {$gt : 30}}

• Alternative: arrays
– { $keyword : [argument list] }
– e.g., { $add : [1, 2] }

• Exception: $fieldName, used to refer to a previously defined field on
the value side
– Purpose: disambiguation
– Only relevant for aggregation pipelines

Retrieval Queries Template
• db.collection.find(<predicate>, optional <projection>)

returns documents that match <predicate>
keep fields as specified in <projection>
both <predicate> and <projection> expressed as
documents in fact, most things are documents!

• db.inventory.find({ })
returns all documents

• db.collection.find(<predicate>, optional <projection>)
– find({title: "Iron Man"})

• all documents with title is “Iron Man”
– find({qty:{$gte:50}})

• all documents with qty >= 50
– find({beds : 6, qty:{$gte:50}})

• all documents that satisfy both
– find({$or:[{beds : 6},{qty:{$lt:30}}]})

• all documents that satisfy either

Retrieval Queries: Nested Documents

• db.collection.find(<predicate>, optional <projection>)
– find({size:{h:14,w:21,uom:"cm"}})

• exact match of nested document, including ordering of fields
– find ({ "size.uom" : "cm", "size.h" : {$gt : 14 })

• querying a nested field
• Note: when using . notation for sub-fields, expression must be in

quotes
• Also note: binary operator handled via a nested document

Retrieval Queries: Arrays
• Slightly different example dataset for Arrays and Arrays of Document

Examples db.collection.find(<predicate>, optional <projection>)
• find({ tags: ["red", "blank"] })

– Exact match of array
• find({ tags: "red" })

– If one of the elements matches red
• find({ tags: "red", tags: "plain" })

– If one matches red, one matches plain
• find({dim:{$gt:15,$lt:20}})

– If one element is >15 and another is <20
• find({ dim: {$elemMatch: { $gt: 15, $lt: 20 } } })

– If a single element is >15 and <20
• find({"dim.1":{$gt:25}})

– If second item > 25
– Notice again that we use quotes to when using . notation

Retrieval Queries: Arrays of Documents
• db.collection.find(<predicate>, optional <projection>)
• find({ instock: { loc: "A", qty: 5 }})

– Exact match of document [like nested doc/atomic array case]
• find({ "instock.qty": { $gte : 20 }})

– One nested doc has >= 20
• find({ "instock.0.qty": { $gte : 20 } })

– First nested doc has >= 20
• find({ "instock": { $elemMatch: { qty: { $gt: 10, $lte: 20 } } } })

– One doc has 20 >= qty >10
• find({ "instock.qty": { $gt: 10, $lte: 20 } })

– One doc has 20 >= qty, another has qty>10

Retrieval Queries Template: Projection
• db.collection.find(<predicate>, optional <projection>)
• Use 1s to indicate fields that you want

– Exception: _id is always present unless explicitly excluded
• OR Use 0s to indicate fields you don’t want
• Mixing 0s and 1s is not allowed for non _id fields

MongoDB> db.movies.find({cast: "Rebecca Ferguson", cast: "Tom Cruise"},
{title: 1})
{ "_id" : ObjectId("573a1397f29313caabce8ce7"), "title" : "Risky Business" }
{ "_id" : ObjectId("573a1398f29313caabce9932"), "title" : "Legend" }
{ "_id" : ObjectId("573a1398f29313caabcea315"), "title" : "Top Gun" }

Retrieval Queries : Addendum

• Two additional operations that are useful for retrieval:
– Limit (k) like LIMIT in SQL

• e.g., db.inventory.find({ }).limit(1)

• Sort ({ }) like ORDER BY in SQL
– List of fields, -1 indicates decreasing 1 indicates ascending
– e.g., db.inventory.find({ }, {_id : 0, instock : 0}).sort({ "dim.0": -1,

item: 1 })

Retrieval Queries: Summary

Aggregation Pipelines

Orders

Grouping Syntax
• $group : {

_id: <expression>, // Group By Expression
<field1>: { <aggfunc1> : <expression1> },
... }

Returns one document per unique group, indexed by _id

Agg.func. can be standard ops like $sum, $avg, $max

• Also MQL specific ones:
– $first : return the first expression value per group

• makes sense only if docs are in a specific order [usually done after sort]
– $push : create an array of expression values per group

• didn’t make sense in a relational context because values are atomic
– $addToSet : like $push, but eliminates duplicates

Grouping Example

db.sales.insertMany([
{ "_id" : 1, "item" : "abc", "price" : NumberDecimal("10"), "quantity" :

NumberInt("2"), "date" : ISODate("2014-03-01T08:00:00Z") },
{ "_id" : 2, "item" : "jkl", "price" : NumberDecimal("20"), "quantity" :

NumberInt("1"), "date" : ISODate("2014-03-01T09:00:00Z") },
{ "_id" : 3, "item" : "xyz", "price" : NumberDecimal("5"), "quantity" :

NumberInt("10"), "date" : ISODate("2014-03-15T09:00:00Z") },
{ "_id" : 4, "item" : "xyz", "price" : NumberDecimal("5"), "quantity" :

NumberInt("20") , "date" : ISODate("2014-04-04T11:21:39.736Z") },
{ "_id" : 5, "item" : "abc", "price" : NumberDecimal("10"), "quantity" :

NumberInt("10") , "date" : ISODate("2014-04-04T21:23:13.331Z") },
{ "_id" : 6, "item" : "def", "price" : NumberDecimal("7.5"), "quantity":

NumberInt("5") , "date" : ISODate("2015-06-04T05:08:13Z") },
{ "_id" : 7, "item" : "def", "price" : NumberDecimal("7.5"), "quantity":

NumberInt("10") , "date" : ISODate("2015-09-10T08:43:00Z") },
{ "_id" : 8, "item" : "abc", "price" : NumberDecimal("10"), "quantity" :

NumberInt("5") , "date" : ISODate("2016-02-06T20:20:13Z") },
])

Multiple Agg. Example

Multiple Agg. with Vanilla Projection Example

Multiple Agg. with Adv. Projection Example

Advanced Projection vs. Vanilla Projection

• In addition to excluding/including fields like in projection
during retrieval (find), projection in the aggregation
pipeline allows you to:
– Rename fields
– Redefine new fields using complex expressions on old fields
– Reorganize fields into nestings or unnestings
– Reorganize fields into arrays or break down arrays

Unwinding Arrays
• Deconstructs an array field from the input documents to

output a document for each element
• Each output document is the input document with the

value of the array field replaced by the element.

Looking Up Other Collections

• Conceptually, for each document
– find documents in other collection that join (equijoin)

• local field must match foreign field
– place each of them in an array

• Thus, a left outer equi-join, with the join results stored in
an array

• Recall: One of the key tenants of MongoDB schema
design is to design to avoid the need for joins

Some Rules of Thumb when Writing Queries

• $project is helpful if you want to construct or deconstruct
nestings (in addition to removing fields or creating new
ones)

• $group is helpful to construct arrays (using $push or
$addToSet)

• $unwind is helpful for unwinding arrays
• $lookup is your only hope for joins. Be prepared for a

mess. Lots of $project needed

Creating Documents

Updating Documents

Deleting Documents

MongoDB: Summary

• MongoDB has now evolved into a mature "DBMS" with
some different design decisions, and relearning many of
the canonical DBMS lessons

• MongoDB has a flexible data model and a powerful (if
confusing) query language.

• Many of the internal design decisions as well as the
query & data model can be understood when compared
with DBMSs
– DBMSs provide a "gold standard" to compare against.
– In the "wild" you’ll encounter many more NoSQL systems, and

you’ll need to do the same thing that we did here!

MongoDB Demo

https://cloud.mongodb.com/v2/5ff0901186e4ab652ac8d108

Reading and Next Class

• NoSQL
• Next: Transactions Part 1: Intro. to ACID: Ch 17

