
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Transactions 2: 2PL and Deadlocks

Today’s Topics

• 2PL/2PLC
• Lock Management
• Deadlocks

– Detection
– Prevention

• Specialized Locking

• DBMSs support ACID Transaction semantics
• Concurrency control and Crash Recovery are key

components
• For Isolation property, serial execution of transactions is

safe but slow
– Try to find schedules equivalent to serial execution

• One solution for “conflict serializable” schedules is Two
Phase Locking (2PL)

Review

T1
Read(N)

N = N -1

Write(N)

T2

Read(N)

N = N -1

Write(N)

Lost update problem - no locks

How Do We Lock Data?

• Not by any crypto or hardware enforcement
– There are no adversaries here … this is all within the DBMS

• We lock by simple convention:
– Within DBMS internals, we observe a lock protocol
– If your transaction holds a lock, and my transaction requests a

conflicting lock, then I am queued up waiting for that lock.

Lock

• Simple convention within the DBMS:
– Each data element has a unique lock
– Each transaction must first acquire the lock before

reading/writing that element
– If the lock is taken by another transaction, then wait
– The transaction must release the lock(s) at some point

• Different lock protocols / schemes differ by:
– When to lock / unlock each data element
– What data element to lock
– What happens when a txn waits for a lock

What are “data elements”?

• Major differences between vendors:
– Lock on the entire database

• SQLite
– Lock on individual records

• SQL Server, DB2, etc
• Lock Granularity

– Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

– Coarse grain locking (e.g., tables, entire database)
• Many false conflicts
• Less overhead in managing locks

Solution – part 1

▪ with locks:
▪ lock manager: grants/denies lock requests

time

T1

lock(N)

Read(N)

N=N-1

Write(N)

Unlock(N)

T2

lock(N)

lock manager

grants lock

denies lock

T2: waits

grants lock to T2
Read(N) ...

Lost update problem – with locks

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)
• Cannot get new locks after releasing any locks (strict

2PL)

Compatibility matrix

Lock Management
• Lock and unlock requests handled by Lock Manager (LM)
• LM maintains a hashtable, keyed on names of objects being locked.
• LM keeps an entry for each currently held lock
• Entry contains

– Granted set: Set of xacts currently granted access to the lock
– Lock mode: Type of lock held (Shared or eXclusive)
– Wait Queue: Queue of lock requests

Granted Set Mode Wait Queue
A {T1, T2} S T3(X) ß T4(X)

B {T6} X T5(X) ß T7(S)

Lock Management (continued)

• When lock request arrives:
– Does any xact in Granted Set or Wait Queue want a conflicting lock?

• If no, put the requester into “granted set” and let them proceed
• If yes, put requester into wait queue (typically FIFO)

• Lock upgrade:
– Xact with shared lock can request to upgrade to exclusive

Granted Set Mode Wait Queue
A {T1, T2} S T3(X) ß T4(X)

B {T6} X T5(X) ß T7(S)

Summary: Lock Management

▪ transactions request locks (or upgrades)
▪ lock manager grants or blocks requests
▪ transactions release locks
▪ lock manager updates lock-table

Locks

• Q: I just need to read ‘N’ - should I still get a lock?

Actions on Locks

• Locki(A) / Li(A) = transaction Ti acquires lock for element
A

• Unlocki(A) / Ui(A) = transaction Ti releases lock for
element A

A Non-Serializable Schedule

Example

Using locks has ensured a conflict-serializable schedule

Another Example

Locks did not enforce conflict-serializability

Two Phase Locking (2PL)
• The most common scheme for enforcing conflict

serializability
• A bit “pessimistic”

– Sets locks for fear of conflict… Some cost here.
– Alternative schemes use multiple versions of data and

“optimistically” let transactions move forward
• Abort when conflicts are detected.
• Some names to know/look up:

– Optimistic Concurrency Control
– Timestamp-Ordered Multiversion Concurrency Control

• We will not study these schemes in this lecture

Two Phase Locking (2PL), Part 2
• Rules:

– Xact must obtain a S (shared) lock before reading, and an X
(exclusive) lock before writing.

– Xact cannot get new locks after releasing any locks

S X

S Ö –

X – –

Lock
Compatibility
Matrix

Two Phase Locking (2PL), Part 3

• 2PL guarantees conflict serializability
• But, does not prevent cascading aborts

time

locks held

release phaseacquisition
phase

growing phase shrinking phase

Why 2PL guarantees conflict serializability
• When a committing transaction has reached the end of its

acquisition phase…
– Call this the “lock point”
– At this point, it has everything it needs locked…
– … and any conflicting transactions either:

• started release phase before this point
• are blocked waiting for this transaction

• Visibility of actions of two conflicting transactions are
ordered by their lock points

• The order of lock points gives us an equivalent serial
schedule!

Two-Phase Locking (2PL), cont.

▪ 2PL on its own is sufficient to guarantee conflict
serializability (i.e., schedules whose precedence graph is
acyclic), but, it is subject to Cascading Aborts.

time

locks
held

release
phase

acquisition
phase

Strict Two Phase Locking (2PL)

• Problem: Cascading Aborts
• Example: rollback of T1 requires rollback of T2!

• Solution: Strict 2PL, i.e, keep all locks, until ‘commit’

T1: R(A), W(A) Abort
T2: R(A), W(A)

Non-recoverable Schedule

Strict Two Phase Locking
• Same as 2PL, except all locks released together when

transaction completes
– (i.e.) either

• Transaction has committed (all writes durable), OR
• Transaction has aborted (all writes have been undone)

locks held

acquisition
phase

time

release all locks
at end of xact

locks
held

acquisition
phase

time

release all locks
at end of xact

Strict 2PL == 2PLC (2PL till Commit)

▪ In effect, “shrinking phase” is delayed until
–Transaction commits (commit log record on disk), or
–Aborts (then locks can be released after rollback).

Strict 2PL

Strict 2PL

• Lock-based systems always use strict 2PL
• Easy to implement:

– Before a transaction reads or writes an element A, insert an L(A)
– When the transaction commits/aborts, then release all locks

• Ensures both conflict serializability and recoverability

Non-2PL, A = 1000, B = 2000, Output = ?
T1 T2

Lock_X(A)
Read(A)

Lock_S(A)
A: = A-50
Write(A)

Unlock(A)
Read(A)
Unlock(A)
Lock_S(B)

Lock_X(B)
Read(B)
Unlock(B)
PRINT(A), PRINT(B), PRINT(A+B)

Read(B)
B := B +50
Write(B)
Unlock(B)

Output: 950, 2000, 2950

Non-2PL, A = 1000, B = 2000, Output = ? cont
T1 T2

Lock_X(A)
Read(A): (A=1000)

Lock_S(A)
A: = A-50 (A=950)
Write(A) A=950

Unlock(A)
Read(A) (A = 950)
Unlock(A)
Lock_S(B)

Lock_X(B)
Read(B) (B=2000)
Unlock(B)
PRINT(A), PRINT(B), PRINT(A+B)

Read(B) (B=2000)
B := B +50 (B=2050)
Write(B) B=2050
Unlock(B)

Output: 950, 2000, 2950

2PL, A = 1000, B = 2000, Output = ?
T1 T2

Lock_X(A)
Read(A)
A: = A-50
Write(A)
Unlock(A)

Lock_X(B)
Lock_S(A)
Read(A)

Read(B)
B := B +50
Write(B)
Unlock(B)

Unlock(A)
Lock_S(B)
Read(B)
Unlock(B)
PRINT(A), PRINT(B), PRINT(A+B)

Output: 950, 2050, 3000

Strict 2PL, A = 1000, B = 2000, Output = ?

T1 T2
Lock_X(A)
Read(A)

Lock_S(A)
A: = A-50
Write(A)

Lock_X(B)
Read(B)
B := B +50
Write(B)
Unlock(A)
Unlock(B)

Read(A)
Lock_S(B)
Read(B)
PRINT(A), PRINT(B), PRINT(A+B)
Unlock(A)
Unlock(B)

Output: 950, 2050, 3000

Venn Diagram for Schedules

Serializable

Avoid
Cascading
Aborts

Serial

View Serializable

Conflict Serializable

All Schedules

Q: Which schedules does Strict 2PL allow?

Serializable

Avoid
Cascading
Aborts

Serial

View Serializable

Conflict Serializable

All Schedules

2PL schedules

serializable
schedules

serial sch’s2PLC

Another Venn diagram

Another problem: Deadlocks

• T1: R(A), W(B)
• T2: R(B), W(A)
• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

Deadlocks

• Deadlock: Cycle of Xacts waiting for locks to be released
by each other.

• Three ways of dealing with deadlocks:
– Prevention
– Avoidance
– Detection and Resolution

• Many systems just punt and use timeouts
– What are the dangers with this approach?

Deadlock Detection

▪ Create and maintain a waits-for graph:
–Nodes are transactions
–Edge from Ti to Tj if Ti is waiting for Tj to release a lock

▪ Periodically check for cycles in waits-for graph

Deadlock Detection, Part 2

Example:

T1:
T2:
T3:

T4:

T1 T2

T4 T3

Deadlock Detection, Part 3

Example:

T1: S(A)
T2:
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 4

Example:

T1: S(A) S(D)
T2:
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 5

Example:

T1: S(A) S(D)
T2: X(B)
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 6

Example:

T1: S(A) S(D) S(B)
T2: X(B)
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 7

Example:

T1: S(A) S(D) S(B)
T2: X(B)
T3: S(D)
T4:

T1 T2

T4 T3

Deadlock Detection, Part 8

Example:

T1: S(A) S(D) S(B)
T2: X(B)
T3: S(D), S(C)
T4:

T1 T2

T4 T3

Deadlock Detection, Part 9

Example:

T1: S(A) S(D) S(B)
T2: X(B) X(C)
T3: S(D) S(C)
T4:

T1 T2

T4 T3

Deadlock Detection, Part 10

Example:

T1: S(A) S(D) S(B)
T2: X(B) X(C)
T3: S(D) S(C)
T4: X(B)

T1 T2

T4 T3

Deadlock Detection, Part 11

Example:

T1: S(A) S(D) S(B)
T2: X(B) X(C)
T3: S(D) S(C) X(A)
T4: X(B)

T1 T2

T4 T3

Deadlock Detection, Part 12
Example:

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1 T2

T4 T3

Deadlock!

• T1, T2, T3 are deadlocked
– Doing no good, and holding locks

• T4 still cruising
• In the background, run a deadlock detection algorithm

– Periodically extract the waits-for graph
– Find cycles
– “Shoot” a transaction on the cycle

• Empirical fact
– Most deadlock cycles are small (2-3 transactions)

T1 T2

T3
T4

• is there a deadlock?
• if yes, which acts are
involved?

Another example

• now, is there a deadlock?
• if yes, which xacts are
involved?

T1 T2

T3
T4

Another example

• Q: what to do?
T1 T2

T3
T4

Deadlock handling

T1 T2

T3
T4

• Q0: what to do?
• A: select a ‘victim’ & ‘rollback’

• Q1: which/how to choose?

Deadlock handling

T1 T2

T3
T4

• Q1: which/how to choose?
• A1.1: by age

• A1.2: by progress
• A1.3: by # items locked already...

• A1.4: by # xacts to rollback

• Q2: How far to rollback?

Deadlock handling

T1 T2

T3
T4

• Q2: How far to rollback?
•A2.1: completely

•A2.2: minimally
• Q3: Starvation??

Deadlock handling

T1 T2

T3
T4

• Q3: Starvation??
• A3.1: include #rollbacks in victim
selection criterion.

Deadlock handling

Deadlock Prevention

▪ Assign priorities based on age (timestamps)
▪ older -> higher priority

▪ We only allow ‘old-wait-for-young’
▪ (or only allow ‘young-wait-for-old’)
▪ and rollback violators. Specifically:
▪ Say Ti wants a lock that Tj holds - two policies:
–Wait-Die: If Ti has higher priority, Ti waits for Tj;

otherwise Ti aborts (ie., old wait for young)
–Wound-wait: If Ti has higher priority, Tj aborts;

otherwise Ti waits (ie., young wait for old)

Deadlock Prevention

Wait-Die Wound-Wait
Ti wants Tj has Ti wants Tj has

Priorities

▪ Q: Why do these schemes guarantee no deadlocks?
▪ A: only one ‘type’ of direction allowed.
▪ Q: When a transaction restarts, what is its (new) priority?
▪ A: its original timestamp. -- Why?

Deadlock Prevention

▪ usually, conc. control is transparent to the user, but
▪ LOCK <table-name> [EXCLUSIVE|SHARED]

SQL statement

Phantom Problem
• So far we have assumed the database to be a static

collection of elements (=tuples)
• If tuples are inserted/deleted then the phantom problem

appears
• A “phantom” is a tuple that is invisible during part of a

transaction execution but not invisible during the entire
execution
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

Phantom Problem

T1 sees a “phantom” product A3

TRANSACTION

recommended
Transaction Support in SQL-92

▪ SERIALIZABLE – No phantoms, all reads repeatable, no
“dirty” (uncommited) reads.

▪ REPEATABLE READS – phantoms may happen.
▪ READ COMMITTED – phantoms and unrepeatable reads

may happen
▪ READ UNCOMMITTED – all of them may happen.

Transaction Support in SQL-92

▪ SERIALIZABLE : obtains all locks first; plus index locks,
plus strict 2PL

▪ REPEATABLE READS – as above, but no index locks
▪ READ COMMITTED – as above, but S-locks are

released immediately
▪ READ UNCOMMITTED – as above, but allowing ‘dirty

reads’ (no S-locks)

isolation
level
access mode

Transaction Support in SQL-92

▪ SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ ONLY

▪ Defaults:
▪ SERIALIZABLE
▪ READ WRITE

Conclusions

▪ 2PL/2PL-C (=Strict 2PL): extremely popular
▪ Deadlock may still happen

–detection: wait-for graph
–prevention: abort some xacts, defensively

▪ philosophically: concurrency control uses:
–locks
–and aborts

Reading and Next Class

• Transactions Part 2: 2PL/2PLC and Deadlocks: Ch 17
• Next: Logging and Recovery Part 1: Ch 16, 18

