
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

Transactions 1: Intro. to ACID

Today’s Topics

• ACID
• Transaction management

Architecture of a DBMS

Database
Management

Database

Query Parsing
& Optimization

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

SQL Client

Transaction ManagerLogging &
RecoveryLock Manager

Concurrency Control & Recovery
• Part 1: Concurrency Control

– Correct/fast data access in the presence of concurrent work by
many users

– Disorderly processing that provides the illusion of order

• Part 2: Recovery
– Ensure database is fault tolerant
– Not corrupted by software, system or media failure
– Storage guarantees for mission-critical data

• It’s all about the programmer!
– Systems provide guarantees
– These guarantees lighten the load of app writers

What is a Transaction?
• A sequence of multiple actions to be executed as an atomic unit

– a sequence of read and write operations (read(A), write(B), …)
– DBMS’s abstract view of a user program

• Application View (SQL View):
– Begin transaction
– Sequence of SQL statements
– End transaction

• Examples
– Transfer money between accounts
– Book a flight, a hotel and a car together on Expedia

Transaction
• Transaction (“Xact”):

– A sequence of reads and writes of database objects
– Batch of work that must commit or abort as an atomic unit

• Xact Manager controls execution of transactions
• Database systems are normally being accessed by many users or

processes at the same time.
– Both queries and modifications.

• Unlike operating systems, which support interaction of processes, a
DMBS needs to keep processes from troublesome interactions.

• Program logic is invisible to DBMS!
– Arbitrary computation possible on data fetched from the DB
– The DBMS only sees data read/written from/to the DB

Transaction Example

• Transaction to transfer $100 from account R to account S

1. start transaction
2. read(R)
3. R = R – 100
4. write(R)
5. read(S)
6. S = S + 100
7. write(S)
8. end transaction

Not seen by the
DBMS transaction

manager!

ACID: Properties of Transactions
• Atomicity: Either all actions in the transaction

happened or none happen
• Consistency: If the DB starts out consistent, it ends up

consistent at the end of the transaction
• Isolation: It appears to the user as if only one process

executes at a time. Each transaction is isolated from
that of others

• Durability: If a transaction is completed, its effects
should persist even if the system survives a crash

Atomicity of Transactions

Two possible outcomes of executing a transaction:
– Transaction might commit after completing all its actions
– or it could abort (or be aborted by the DBMS) after executing

some actions
• Or system crash while the transaction is in progress; treat as

abort
DBMS guarantees that transaction are atomic.
– From user’s point of view: transaction always either executes all its

actions, or executes no actions at all

COMMIT

• The SQL statement COMMIT causes a transaction to
complete
– It is database modifications are now permanent in the

database
– The effects of a committed transaction must survive failures

• DBMS typically ensures the above by logging all
actions:
– Redo actions of committed transactions not yet propagated

to disk when system crashes

ROLLBACK

The SQL statement ROLLBACK also causes the transaction to
end, but by aborting

No effects on the database

Failures like division by 0 or a constraint violation can also
cause rollback, even if the programmer does not request it
DBMS typically ensures the above by logging all actions:

Undo the actions of aborted/failed transactions

Transaction states

active

partially

committed
commited

failed aborted

Transaction Consistency
• Transactions preserve DB consistency

– Given a consistent DB state, produce another consistent DB state
• DB consistency expressed as a set of declarative integrity constraints

– CREATE TABLE/ASSERTION statements
• Transactions that violate integrity are aborted

– That’s all the DBMS can automatically check!

DBMS
(state1)

Transaction

DBMS
(state2)

Consistent States
(ICs all satisfied)

Isolation (Concurrency)
• DBMS interleaves actions of many transactions

– Actions = reads/writes of DB objects

• DBMS ensures 2 transactions do not “interfere”

• Each transaction executes as if it ran by itself
– Concurrent accesses have no effect on transaction's behavior
– Net effect must be identical to executing all transactions in some

serial order
– Users & programmers think about transactions in isolation

• Without considering effects of other concurrent transaction!

Isolation: An Example
• Think about avoiding problems due to concurrency

– If another transaction T2 accesses R and S between steps 4 and 5 of T1, it will
see a lower value for R+S.

• Isolation easy to achieve by running one Xact at a time
– However, recall that serial execution is not desirable

1. start transaction
2. read(R)
3. R = R – 100
4. write(R)

5. read(S)
6. S = S + 100
7. write(S)
8. end transaction

T1

1. start transaction
2. read(R)
3. print(R+S)
4. end transaction

T2

Durability

• The effects of a committed transaction must
survive failures

• We will talk more about this in logging and
recovery

ACID properties
Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

Logging and recovery

Concurrency control

• ACID Transactions make guarantees that
- Improve performance (via concurrency)
- Relieve programmers of correctness concerns

- Hide concurrency and failure handling!

• Two key issues to consider, and mechanisms
- Concurrency control (via two-phase locking)
- Recovery (via write-ahead logging WAL)

Concurrent Execution
• Multiple transactions are allowed to run concurrently in the system.
• Throughput (transactions per second):

– Increase processor/disk utilization à more transactions per second (TPS) completed
• Single core: can use the CPU while another is reading to/writing from the disk
• Multicore: ideally, scale throughput in the number of processors

• Latency (response time per transaction):
– Multiple transactions can run at the same time rather than waiting for earlier ones to

finish
– So one transaction’s latency need not be dependent on another unrelated transaction
– Lightweight transactions are not bottlenecked on more time-consuming ones to finish
– Or that’s the hope

Statement of problems

Arbitrary interleaving can lead to
– Temporary inconsistency (ok, unavoidable)
– “Permanent” inconsistency (bad!)
Inconsistent Reads: A user reads only part of what was
updated
Lost Update: Two users try to update the same record so
one of the updates gets lost
Dirty Reads: One user reads an update that was never
committed

Example: ‘Inconsistent Reads’ problem

INSERT INTO DollarProducts(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <= 0.99

SELECT count(*)
FROM Product

SELECT count(*)
FROM DollarProducts

User 1 User 2

Example: ‘Lost-update’ problem

time

Example: ‘Dirty Reads’ problem

UPDATE Account
SET amount = 1000000
WHERE number = “my-account”

Aborted by
the system

SELECT amount
FROM Account
WHERE number = “my-account”

User 2User 1

Concurrency Control: Providing Isolation

• Naïve approach - serial execution
– One transaction runs at a time
– Safe but slow

• Execution must be interleaved for better performance

• With concurrent executions, how does one define and

ensure correctness?

Transaction Schedules
A schedule is a sequence of actions on data from one
or more transactions.

Actions: Begin, Read, Write, Commit and Abort.

R1(A) W1(A) R1(B) W1(B) R2(A) W2(A) R2(B) W2(B)

By convention we only include committed transactions,
and omit
Begin and Commit.

T1 T2

begin
read(A)
write(A)
read(B)
write(B)
commit

begin
read(A)
write(A)
read(B)
write(B)
commit

Serial Equivalence

• Concept for correct behavior

• Definition: Serial schedule
– Each transaction runs from start to finish without any intervening

actions from other transactions

• Definition: two schedules are equivalent if they:
– involve the same transactions
– each individual transaction’s actions are ordered the same
– both schedules leave the DB in the same final state
– For any database state, the effect of executing the first schedule is

identical to the effect of executing the second schedule

Serializability
• Definition: Schedule S is serializable if:

– S is equivalent to some serial schedule
– Results are equivalent to some serial execution of the transactions

• Note: If each transaction preserves consistency, every
serializable schedule preserves consistency

Serializable Schedule
• Let T1 transfer $100 from A to B
• Let T2 add 10% interest to A & B

• Final outcome:
– A = 1.1*(A-100)
– B = 1.1*(B+100)

Schedule 1

• Let T1 transfer $100 from A to B
• Let T2 add 10% interest to A & B
• Serial schedule in which T1 is followed by T2

– Final outcome:
• A := 1.1*(A-100)
• B := 1.1*(B+100)

T1: Transfer $100
from A to B

T2: Add 10%
interest to A & B

begin

read(A)

A = A - 100

write(A)

read(B)

B = B + 100

write(B)

commit

begin

read(A)

A = A * 1.1

write(A)

read(B)

B = B * 1.1

write(B)

commit

Schedule 2
T1: Transfer $100

from A to B
T2: Add 10%

interest to A & B
begin

read(A)

A = A * 1.1

write(A)

read(B)

B = B * 1.1

write(B)

commit

begin

read(A)

A = A - 100

write(A)

read(B)

B = B + 100

write(B)

commit

• Serial schedule in which T2 is followed by T1
– Final outcome:

• A := (1.1*A)-100
• B := (1.1*B)+100

– Different!
• But still understandable

Schedule 3
• Schedule in which actions of T1 and T2 are

interleaved.
• This is not a serial schedule
• But it is equivalent to schedule 1

– A := (A-100)*1.1
– B := (B+100)*1.1

• Hence serializable!

T1: Transfer $100
from A to B

T2: Add 10%
interest to A & B

begin

read(A)

A = A - 100

write(A)

begin

read(A)

A = A * 1.1

write(A)

read(B)

B = B + 100

write(B)

commit

read(B)

B = B * 1.1

write(B)

commit

Conflicting Operations
• Tricky to check property “leaves the DB in the same final state”
• Need an easier equivalence test!

– Settle for a “conservative” test: always true positives, but some false negatives
– I.e., sacrifice some concurrency for easier correctness check

• Use notion of “conflicting” operations (read/write)

• Definition: Two operations conflict if they:
– Are by different transactions,
– Are on the same object,
– At least one of them is a write.

• The order of non-conflicting operations has no effect on the final state of the
database!

– Focus our attention on the order of conflicting operations

Anomalies with interleaved execution:
• Two operations conflict if they:

– Are by different transactions,
– Are on the same object,
– At least one of them is a write.

• WR conflicts
• RW conflicts
• WW conflicts

Anomalies with Interleaved Execution

Reading Uncommitted Data (WR Conflicts, “dirty
reads”):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

Anomalies with Interleaved Execution

Reading Uncommitted Data (WR Conflicts, “dirty
reads”):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

Anomalies with Interleaved Execution

Unrepeatable Reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Anomalies with Interleaved Execution

Unrepeatable Reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Anomalies (Continued)

Overwriting Uncommitted Data (WW Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Anomalies (Continued)
Overwriting Uncommitted Data (WW Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Serializability
Objective: find non-serial schedules, which allow transactions
to execute concurrently without interfering, thereby
producing a DB state that could be produced by a serial
execution
BUT
– Trying to find schedules equivalent to serial execution is too slow!

Conflict Serializable Schedules
• Definition: Two schedules are conflict equivalent if:

– They involve the same actions of the same transactions, and
– Every pair of conflicting actions is ordered the same way

• Definition: Schedule S is conflict serializable if:
– S is conflict equivalent to some serial schedule
– Implies S is also Serializable

Note: some serializable schedules are NOT conflict serializable
– Conflict serializability gives false negatives as a test for

serializability!
– The cost of a conservative test
– A price we pay to achieve efficient enforcement

Conflict Serializability - Intuition

• A schedule S is conflict serializable if
– You are able to transform S into a serial schedule by swapping consecutive non-

conflicting operations of different transactions

• Example

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability – Intuition, Part 2

• A schedule S is conflict serializable if
– You are able to transform S into a serial schedule by swapping consecutive non-

conflicting operations of different transactions
• Example

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability – Intuition, Part 3

• A schedule S is conflict serializable if
– You are able to transform S into a serial schedule by swapping consecutive non-

conflicting operations of different transactions
• Example

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability – Intuition, Part 4
• A schedule S is conflict serializable if

– You are able to transform S into a serial schedule by swapping consecutive non-
conflicting operations of different transactions

• Example

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability – Intuition, Part 5
• A schedule S is conflict serializable if

– You are able to transform S into a serial schedule by swapping consecutive non-
conflicting operations of different transactions

• Example

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability – Intuition, Part 6
• A schedule S is conflict serializable if

– You are able to transform S into a serial schedule by swapping consecutive non-
conflicting operations of different transactions

• Example

R(A) R(B)W(A) W(B)
R(A)W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability (Continued)

• Here’s another example:

• Conflict Serializable or not?

R(A) W(A)
R(A) W(A)

NOT!

Conflict Dependency Graph

• Dependency Graph:
– One node per Xact
– Edge from Ti to Tj if:

• An operation Oi of Ti conflicts with an operation Oj of Tj and
• Oi appears earlier in the schedule than Oj

• Theorem: Schedule is conflict serializable if and only if its
dependency graph is acyclic.

Proof Sketch: Conflicting operations prevent us
from “swapping” operations into a

serial schedule

Ti Tj

Example

• A schedule that is not conflict serializable

T1 T2 Dependency graph

T1: R(A), W(A)

Example, pt 2

• A schedule that is not conflict serializable

T1: R(A), W(A),
T2: R(A)

T1 T2 Dependency graph

Example, pt 3

• A schedule that is not conflict serializable

T1: R(A), W(A),
T2: R(A), W(A), R(B), W(B)

T1 T2 Dependency graph
A

Example, pt 4

• A schedule that is not conflict serializable

T1: R(A), W(A), R(B)
T2: R(A), W(A), R(B), W(B)

B
T1 T2 Dependency graph

A

View Serializability
• Alternative notion of serializability: fewer false negatives
• Schedules S1 and S2 are view equivalent if:

– Same initial reads:
• If Ti reads initial value of A in S1, then Ti also reads initial value of A in S2

– Same dependent reads:
• If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2

– Same winning writes:
• If Ti writes final value of A in S1, then Ti also writes final value of A in S2

• Basically, allows all conflict serializable schedules + “blind writes”

view
T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A) W(A)
T2: W(A)
T3: W(A)

Notes on Serializability Definitions
• View Serializability allows (a few) more schedules than conflict

serializability
– But V.S. is difficult to enforce efficiently.

• Neither definition allows all schedules that are actually serializable.
– Because they don’t understand the meanings of the operations or the data

• Conflict Serializability is what gets used, because it can be enforced
efficiently
– To allow more concurrency, some special cases do get handled separately.
– (Search the web for “Escrow Transactions” for example)

Serializability in Practice

• One solution for “conflict serializable” schedules
is Two Phase Locking (2PL)

• Use locks; keep them until commit
– Strict Two Phase Locking (strict 2PL)

Summary

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic
– System automatically inserts lock/unlock requests and

schedules actions of different Xacts
– Property ensured: resulting execution is equivalent to

executing the Xacts one after the other in some order.

Reading and Next Class

• ACID and Transactions: Ch 16.1 – 16.6
• Next: 2PL/2PLC and Deadlocks: Ch 17

