CS 4604: Introduction to Database Management Systems

Functional Dependencies

Virginia Tech CS 4604 Sprint 2021 Instructor: Yinlin Chen

Today's Topics

- Functional dependencies (FD)
 - Definition
 - Armstrong's "axioms"
 - FD closure and cover
 - Attribute closure
 - (Super)key and candidate key

Steps in Database Design

- Requirements Analysis
 - user needs; what must database do?
- Conceptual Design
 - high level description (often done w/ER model)
 - ORM encourages you to program here
- Logical Design
 - translate ER into DBMS data model
 - ORMs often require you to help here too
- Schema Refinement
 - consistency, normalization
- Physical Design indexes, disk layout
- Security Design who accesses what, and how

Today

Bad Relation Converted from E/R Diagram

- Hard to use (CRUD)
- Mental effort (Treat others are mind readers)
- Arbitrarily (No rules followed)
- Redundancy (Space, Inconsistencies, etc.)

Relational Schema Design

Name	SSN	PhoneNumber	City
Fred	123-45-6789	510-555-1234	Berkeley
Fred	123-45-6789	510-555-6543	Berkeley
Joe	987-65-4321	908-555-2121	San Jose

- One person may have multiple phones, but lives in only one city
- Primary key is what?
- What is the problem with this schema?

Relational Schema Design

Name	SSN	PhoneNumber	City
Fred	123-45-6789	510-555-1234	Berkeley
Fred	123-45-6789	510-555-6543	Berkeley
Joe	987-65-4321	908-555-2121	San Jose

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Oakland"?
- Deletion anomalies = what if Joe deletes his phone number?

Relational Schema Design

Break the relation into two:

Name		SSN	P	PhoneNumber City			
Fred		123-45-6789		510-555-1234 Berkeley			
Fred		123-45-6789	5	510-555-6543 Berkeley			
Joe		987-65-4321	9	08-555-2121	San Jose		
Name	SSN	City					
Fred	123-45-6789	Berkeley		SSN	PhoneNumber		
				123-45-6789	510-555-1234		
Joe	987-65-4321	San Jose		123-45-6789	510-555-6543		
Anomalies have gone:			987-65-4321 908-555-2121				

- No more repeated data
- Easy to move Fred to "Oakland"
- Easy to delete all Joe's phone numbers

Relational Schema Design (or Logical Design)

How do we do this systematically?

– Start with some relational schema

- Find out its *functional dependencies* (FDs)

- Use FDs to *normalize* the relational schema

- $X \rightarrow Y$: 'X' functionally **determines** 'Y'
- Informally: 'if you know 'X', there is only one 'Y' to match'
- If t is a tuple in a relation R and A is an attribute of R, then t[A] is the value of attribute A in tuple t

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Formally: $X \rightarrow Y \rightarrow (t1[X] = t2[X] \rightarrow t1[Y] = t2[Y])$

if two tuples agree on the 'X' attribute, they *must* agree on the 'Y' attribute, too (eg., if ids are the same, so should be names)

EmplD E0045	<mark>Name</mark> Smith	Phone 1234	Position Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

X and Y can be **sets** of attributes

A FD on a relation R is a statement:

 If two tuples in R agree on attributes A1, A2, ..., An then they must also agree on the attribute B1, B2,, Bm

- Notation: A1,A2,... An \rightarrow B1, B2, ..., Bm

- A FD is a constraint on a single relational schema
 - It must hold on every instance of the relation
 - You can not deduce an FD from a relation instance!
 - But you can deduce if an FD does NOT hold using an instance

FD Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

FD Example - 2

X	Y	X	Y	X	
1	6	1	3	1	
1	7	1	3	1	
2	8	1	3	1	
		2	3	2	
X –	→ Y	3	4	3	
		X _	\rightarrow V	1	
			/ I	Y	

VIRGINIA TECH.

FD Summary

- FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- If we say that R satisfies an FD, we are stating a constraint on R

Why We Need FDs?

Name	SSN	PhoneNumber	City
Fred	123-45-6789	510-555-1234	Berkeley
Fred	123-45-6789	510-555-6543	Berkeley
Joe	987-65-4321	908-555-2121	San Jose

Anomalies:

- Redundancy = repeat data
- Update anomalies = what ir Fred moves to "Oakland"?

Deletion anomalies = what if Joe deletes his phone number?

An Interesting Observation

- Workers(<u>ssn</u>, name, lot, did, since)
- If these FDs are true:
 - $-ssn \rightarrow did$
 - $-\operatorname{did} \rightarrow \operatorname{lot}$
- Then this FD also holds:
 - ssn → lot

An Interesting Observation - 2

- If all these FDs are true:
 - name → color
 - category \rightarrow department
 - color, category \rightarrow price
- Then this FD also holds:
 - name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.

Finding New FDs: Armstrong's Axioms (AA)

- Suppose X, Y, Z are sets of attributes, then:
 - − *Reflexivity*: If $X \supseteq Y$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - *Transitivity*: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- **Sound** and **complete** inference rules for FDs!
- Some additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - *Decomposition*: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Pseudo-transitivity: If X \rightarrow Y and YW \rightarrow Z, then XW \rightarrow Z

Armstrong's Axioms

Prove 'Union' from three axioms:

 $\begin{array}{ccc} X \to Y & (1) \\ X \to Z & (2) \end{array}$ (1) $(1) + augm.w / Z \Longrightarrow XZ \to YZ$ (3)(4) $(2) + augm.w / X \Longrightarrow XX \longrightarrow XZ$ but XX is X thus (3) + (4) and transitivity $\Rightarrow X \rightarrow YZ$

Armstrong's Axioms

Prove Decomposition:

$$X \to YZ \Rightarrow \begin{array}{c} X \to Y \\ X \to Z \end{array}$$

YZ
ightarrow Y (Reflexivity)

$$X \rightarrow Y, \text{ So does } X \rightarrow Z$$

Armstrong's Axioms

Prove Pseudo-transitivity:

$$\left.\begin{array}{c}
X \to Y \\
YW \to Z
\end{array}\right\} \Rightarrow XW \to Z$$

- $XW \rightarrow YW$ Augmentation
- $XW \rightarrow Z$ Transitivity

Example

- Relation R: { A, B, C }
- $F = \{ A \rightarrow B \text{ and } B \rightarrow C \}$
- FDs
 - $A \rightarrow C$
 - $AC \rightarrow BC$
 - $AB \rightarrow AC$
 - $-AB \rightarrow CB$
 - $AC \rightarrow B$

- ...

Closure of a set of FDs

- Given a set F of FDs, the set of all FDs is called the closure of F, denoted as F⁺
- Use Armstrong's Axioms to find F⁺
- Trivial FD: using reflexivity to generate all trivial dependencies
- Non-trivial FD:
 - Using transitivity and augmentation

Examples of Computing Closures of FDs

- Let us include only completely non-trivial FDs in these examples, with a single attribute on the right
- $F = \{A \rightarrow B, B \rightarrow C\}$ - $\{F\}$ + = $\{A \rightarrow B, B \rightarrow C, A \rightarrow C, AC \rightarrow B, AB \rightarrow C\}$
- $F = \{AB \rightarrow C, BC \rightarrow A, AC \rightarrow B\}$
 - ${F} = {AB \rightarrow C, BC \rightarrow A, AC \rightarrow B}$
- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
 - $\{F\} + = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow C, A \rightarrow D, B \rightarrow D, \ldots\}$

FDs - 'canonical cover' Fc

Given a set F of FD (on a schema) Fc is a **minimal set** of equivalent FDs. Eg., takes(ssn, c-id, grade, name, address) ssn, c-id -> grade ssn-> name, address F ssn,name-> name, address ssn, c-id-> grade, name


```
FDs - 'canonical cover' Fc
```

Fc

ssn, c-id -> grade ssn-> name, address

ssn,name-> name, address

ssn, c-id-> grade, name

F

FDs - 'canonical cover' Fc

why do we need it? – easier to compute candidate keys define it properly compute it efficiently

define it properly - three properties

- -1) the RHS of every FD is a single attribute
- 2) the closure of Fc is identical to the closure of F
 (ie., Fc and F are equivalent)
- 3) Fc is minimal (ie., if we eliminate any attribute from the LHS or RHS of a FD, property #2 is violated

#3: we need to eliminate 'extraneous' attributes. An attribute is 'extraneous if

- the closure is the same, before and after its elimination
- or if F-before implies F-after and vice-versa

F

Algorithm:

examine each FD; drop extraneous LHS or RHS attributes; or redundant FDs make sure that FDs have a single attribute in their RHS

repeat until no change

Trace algo for AB->C (1) A->BC (2) B->C (3) A->B (4)

Trace algo for	
AB->C (1)	AB->C (1)
A->BC (2)	A->B (2' A->C (2'
B->C (3)	B->C (3) A->B (4)
A->B (4)	
split (2):	

(2') (2") (3) (4)

AB->C (1)	AB->C (1)
A->C (2'')	
B->C (3)	B->C (3)
A->B (4)	A->B (4)

(2"): redundant (implied by (4), (3) and transitivity

AB->C (1)	B->C	(1')
B->C (3) A->B (4)	B->C A->B	(3) (4)
in (1), 'A' is extraneous: (1),(3),(4) imply (1'),(3),(4), and vice versa		

Attributes Closure

- If we just want to check whether a given dependency X → Y is in the closure of a set F of FDs
 - We can just compute the attribute closure X⁺ without computing F⁺
- Compute attribute closure X⁺ with respect to F
 X⁺ is the set of attributes A such that X → A is in F⁺

Closure of Attributes

Given (INPUT) :

– Attributes {A1, A2, .. An}

– Set of FDs S

Find (OUTPUT) : - X = {A1, A2, ..., An} +

Closure Algorithm

 $X = \{A_1, ..., A_n\}.$

Repeat until X doesn't change do: **if** $B_1, ..., B_n \rightarrow C$ is a FD **and** $B_1, ..., B_n$ are all in X **then** add C to X. Example:

name → color
 category → department
 color, category → price

{name, category}⁺ =
 { name, category, color, department, price }
Hence: name, category → color, department, price

Closure of a set of Attributes

Example

- Relation R: { A, B, C, D, E }
- $F = \{B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B\}$
- Is $B \rightarrow E$ in F^+ ?
 - evaluate the closure of B
 - $-B \rightarrow CD, D \rightarrow E$
 - $B^+ = \{B, C, D, E,\}$
 - Thus B \rightarrow E

Definition of Keys

- FDs allow us to formally define keys
- A set of attributes {A1, A2, ..., An} is a key for relation R if:
 - Uniqueness: {A1, A2, ..., An} functionally determine all the other attributes of R
 - Minimality: no proper set of {A1, A2, ..., An}
 functionally determines all other attributes of R

Definition of Keys

- A superkey is a set of attributes that has the uniqueness property but is not necessarily minimal
 - $-A1, ..., An \rightarrow B$
- A candidate key(or sometimes just key) is a minimal superkey
- If a relation has multiple keys, specify one to be primary key
- If a key has only one attribute A, say A rather than {A}

Computing (Super) Keys

- For all sets X, compute X+
- If X⁺ = [all attributes], then X is a superkey
- Try reducing to the minimal X's to get the candidate key

Example

- Product(name, price, category, color)
- FDs
 - name, category \rightarrow price
 - category \rightarrow color
- Candidate key:
 - (name, category)+ = { name, category, price, color }
 - Hence (name, category) is a candidate key

Closures of Attributes vs Closure of FDs

Both algorithms take as input a relation R and a set of FDs F

- Closure of FDs:
- Computes {F}+, the set of all FDs that follow from F
- Output is a set of FDs
- Output may contain an exponential number of FDs

Closure of attributes:

- In addition, takes a set {A1, A2..., An} of attributes as input
- − Computes {A1, A2, ..., An}+, the **set of all attributes** B, such that A1 A2 ... An \rightarrow B follows from F
- Output is set of all attributes
- Output may contain at most the number of attributes in R

Example

- Relation R: { A, B, C, D, E }
- $F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$
- Is D a superkey?
 - evaluate the closure of D
 - B \rightarrow CD, D \rightarrow E
 - $D^{+} = \{D, E, C\}$
- Is AD a superkey?
 - evaluate the closure of AD
 - $AD \rightarrow B$,
 - $AD^+ = \{A, D, E, C, B\}$
- Is AD a candidate key?
- Is ADE a candidate key?

Example 2

- Relation R: { C, S, J, D, P, Q, V }
- $F = \{ JP \rightarrow C, SD \rightarrow P, C \rightarrow CSJDPQV \}$
- Is SDJ is a key?
 - $JP \rightarrow C, C \rightarrow CSJDPQV$, so JP is a key
 - SD \rightarrow P, so SDJ \rightarrow JP
 - So SDJ \rightarrow CSJDPQV
- Is SD \rightarrow CSDPQV ?

Reading and Next Class

- Functional Dependencies: Ch 19.1-19.3
- Next: BCNF, 3NF and Normalization: Ch 19.4-19.9

