## Problem I, 10 points.

Modify numderivative.cc to calculate the derivative $\exp (x)^{\prime}$ at $x=1$ to within $0.05 \%$ relative error by using: $f^{\prime}(x) \approx(f(x+h / 2)-f(x-h / 2)) / h$. What step size $h$ will you need? What is the advantage of the above formula compared to the one we used in class [i.e. $f^{\prime}(x) \approx(f(x+h)-f(x)) / h$ ]? Using numderivative.cc, find the optimum $h$, and compare it to the optimum for the original numderivative.cc .

## Problem II, 5 points.

One can come up with more and more clever approximations for $f^{\prime}(x)$ : the difference between the approximate $f^{\prime}(x)$ and the mathematically exact derivative can be made arbitrary small for a given small value of $h$. In principle, there is no limit to how accurate your approximation can be in this respect. Now you use this approximate formula (which always contains subtraction of functional values) to numerically estimate $f^{\prime}(x)$ on your computer. Is there a limit to the accuracy of the result? Why?

## Problem III

In numderivative.cc replace the "exp(x)" with " $\sin (1 / x)$ " where appropriate to obtain a numerical estimate for the derivative of $f(x)=\sin (1 / x)$ at
a. 5 points. ) $x=1 / \pi$. Choose " $h$ " so that the result is accurate to within at least 4 decimal points. What is your calculated result?
b. 5 points. What happens when you try the same code for $x=10^{-20} / \pi$ ? Why? Use chain rule (and a change of variables) to re-formulate the problem into a mathematically equivalent one that is free from the defect. Modify the code and re-compute the derivative numerically. Show the results.

