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2.2 Loss of Significance

In this section, we show how loss of significance in subtraction can often be reduced or
eliminated by various techniques, such as the use of rationalization, Taylor series, trigono-
metric identities, logarithmic properties, double precision, and/or range reduction. These
are some of the techniques that can be used when one wants to guard against the degradation
of precision in a calculation. Of course, we cannot always know when a loss of significance
has occurred in a long computation, but we should be alert to the possibility and take steps
to avoid it, if possible.

Significant Digits

We first address the elusive concept of significant digits in a number. Suppose that x is a
real number expressed in normalized scientific notation in the decimal system

x ==+r x 10" (l—logr<1)

For example, x might be
x =0.3721498 x 107

The digits 3,7, 2, 1, 4, 9, 8 used to express r do not all have the same significance because
they represent different powers of 10. Thus, we say that 3 is the most significant digit, and
the significance of the digits diminishes from left to right. In this example, 8 is the least
significant digit.

If x is a mathematically exact real number, then its approximate decimal form can be
given with as many significant digits as we wish. Thus, we may write

;T_O ~ (0.31415 92653 58979

and all the digits given are correct. If x is a measured quantity, however, the situation is quite
different. Every measured quantity involves an error whose magnitude depends on the nature
of the measuring device. Thus, if a meter stick is used, it is not reasonable to measure any
length with precision better than 1 millimeter. Therefore, the result of measuring, say, a plate
glass window with a meter stick should not be reported as 2.73594 meters. That would be
misleading. Only digits that are believed to be correct or in error by at most a few units should
be reported. It is a scientific convention that the least significant digit given in a measured
quantity should be in error by at most five units; that is, the result is rounded correctly.
Similar remarks pertain to quantities computed from measured quantities. For example,
if the side of a square is reported to be s = 0.736 meter, then one can assume that the error
does not exceed a few units in the third decimal place. The diagonal of that square is then

s+/2 ~ 0.10408 61182 x 10"

but should be reported as 0.1041 x 10 or (more conservatively) 0.104 x 10'. The infinite
precision available in \/Z

V2 = 1.41421 35623 73095 . . .

does not convey any more precision to s+/2 than was already present in s.
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EXAMPLE 1

Solution

Computer-Caused Loss of Significance

Perhaps it is surprising that a loss of significance can occur within the computer. It is
essential to understand this process so that blind trust will not be placed in numerical output
from a computer. One of the most common causes for a deterioration in precision is the
subtraction of one quantity from another nearly equal quantity. This effect is potentially
quite serious and can be catastrophic. The closer these two numbers are to each other, the
more pronounced is the effect.

To illustrate this phenomenon, let us consider the assignment statement

y < x — sin(x)

and suppose that at some point in a computer program this statement is executed with an x
value of % Assume further that our computer works with floating-point numbers that have
ten decimal digits. Then

x < 0.66666 66667 x 107!

sin(x) < 0.6661729492 x 107!

x — sin(x) < 0.0004937175 x 107!
x — sin(x) < 0.49371 75000 x 10~*

In the last step, the result has been shifted to normalized floating-point form. Three zeros
have then been supplied by the computer in the three least significant decimal places. We
refer to these as spurious zeros; they are not significant digits. In fact, the ten-decimal-digit
correct value is

1 1
— —sin — A 0.4937174327 x 107*
15 15

Another way of interpreting this is to note that the final digit in x — sin(x) is derived from
the tenth digits in x and sin(x). When the eleventh digit in either x or sin(x) is 5,6, 7, 8, or
9, the numerical values are rounded up to ten digits so that their tenth digits may be altered
by plus one unit. Since these tenth digits may be in error, the final digit in x — sin(x) may
also be in error—which it is!

If x =0.37214 48693 and y = 0.37202 14371, what is the relative error in the computation
of x — y in a computer that has five decimal digits of accuracy?

The numbers would first be rounded to x = 0.37214 and y = 0.37202. Then we have
X —y = 0.00012, while the correct answer is x — y = 0.00012 34322. The relative error
involved is

(r —y) = F =) _ 00000034322

= ~3x 1072
[x =yl 0.00012 34322
This magnitude of relative error must be judged quite large when compared with the relative
error of x and y. (They cannot exceed % x 107* by the coarsest estimates, and in this
example, they are, in fact, approximately 1.3 x 1075.) ]
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It should be emphasized that this discussion pertains not to the operation
filx —y) «<x—y
but rather to the operation
fiffi(x) — ()] < x—y
Roundoff error in the former case is governed by the equation
filx —y) = (x—y)A+9)

where |8 <272* on a 32-bit word-length computer, and on a five-decimal-digit computer
in the example above [§] < 1 x 107%.

In Example 1, we observe that the computed difference of 0.00012 has only two
significant figures of accuracy, whereas in general, one expects the numbers and calculations
in this computer to have five significant figures of accuracy.

The remedy for this difficulty is first to anticipate that it may occur and then to re-
program. The simplest technique may be to carry out part of a computation in double- or
extended-precision arithmetic (that means roughly twice as many significant digits), but
often a slight change in the formulas is required. Several illustrations of this will be given,
and the reader will find additional ones among the problems.

Consider Example 1, butimagine that the calculations to obtain x, y, and x — y are being
done in double precision. Suppose that single-precision arithmetic is used thereafter. In the
computer, all ten digits of x, y, and x —y will be retained, but at the end, x — y will be rounded
to its five-digit form, which is 0.12343 x 1073, This answer has five significant digits of
accuracy, as we would like. Of course, the programmer or analyst must know in advance
where the double-precision arithmetic will be necessary in the computation. Programming
everything in double precision is very wasteful if it is not needed. This approach has another
drawback: There may be such serious cancellation of significant digits that even double
precision might not help.

Theorem on Loss of Precision

Before considering other techniques for avoiding this problem, we ask the following ques-
tion: Exactly how many significant binary digits are lost in the subtraction x — y when x is
close to y? The closeness of x and y is conveniently measured by |1 — (y/x)|. Here is the
result:

LOSS OF PRECISION THEOREM

Let x and y be normalized floating-point machine numbers, where x >y > 0. If
277 <1 — (y/x) £277 for some positive integers p and ¢, then at most p and at least
g significant binary bits are lost in the subtraction x — y.

Proof We prove the second part of the theorem and leave the first as an exercise. To this end, let

x=rx2"and y =5 x 2", where % <r,s < 1. (This is the normalized binary floating-point
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form.) Since y < x, the computer may have to shift y before carrying out the subtraction. In
any case, y must first be expressed with the same exponent as x. Hence, y = (s2"7") x 2"
and

x—y=(@—s2"")x2"

The mantissa of this number satisfies the equations and inequality

2m
r—s2’""=r<1—s ):r(l—z)<2"
r2n X

Hence, to normalize the representation of x —y, a shift of at least ¢ bits to the left is necessary.
Then at least g (spurious) zeros are supplied on the right-hand end of the mantissa. This
means that at least g bits of precision have been lost. ]

In the subtraction 37.59362 1 — 37.58421 6, how many bits of significance will be lost?
Let x denote the first number and y the second. Then

1— 2 =0.0002501754

X
This lies between 2'2 and 2~!'!. These two numbers are 0.00024 4 and 0.00048 8. Hence,
at least 11 but not more than 12 bits are lost. [ |

Here is an example in decimal form: let x = .6353 and y = .6311. These are close,
and 1 — y/x = .00661 < 1072 In the subtraction, we have x — y = .0042. There are two
significant figures in the answer, although there were four significant figures in x and y.

Avoiding Loss of Significance in Subtraction

Now we take up various techniques that can be used to avoid the loss of significance that
may occur in subtraction. Consider the function

f)=vxr+1-1 (1)

whose values may be required for x near zero. Since /x> + 1 ~ | when x ~ 0, we see
that there is a potential loss of significance in the subtraction. However, the function can be
rewritten in the form

— VX2 H141 x?
f& = ( xz+1_1)<«/x2+1+1>:\/x2+1+1 -

by rationalizing the numerator—that is, removing the radical in the numerator. This proce-
dure allows terms to be canceled and thereby removes the subtraction. For example, if we
use five-decimal-digit arithmetic and if x = 1073, then f(x) will be computed incorrectly
as zero by the first formula but as % x 107 by the second. If we use the first formula to-
gether with double precision, the difficulty is ameliorated but not circumvented altogether.
For example, in double precision, we have the same problem when x = 107°.
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As another example, suppose that the values of
f(x) =x —sinx 3)

are required near x = 0. A careless programmer might code this function just as indicated
in Equation (3), not realizing that serious loss of accuracy will occur. Recall from calculus
that
. sinx
lim — =1
x—0 Xx
to see that sinx ~ x when x ~ 0. One cure for this problem is to use the Taylor series for
sin x:
. P
smx:x—ﬁ—i-a—ﬁ-i--'-
This series is known to represent sin x for all real values of x. For x near zero, it converges
quite rapidly. Using this series, we can write the function f as
[ R [ R
f(x)=x—<x—§+§ ————— >:§_§+ﬁ_'“ “4)
We see in this equation where the original difficulty arose; namely, for small values of x,
the term x in the sine series is much larger than x*/3! and thus more important. But when
f(x) is formed, this dominant x term disappears, leaving only the lesser terms. The series
that starts with x3 /3! is very effective for calculating f(x) when x is small.

In this example, further analysis is needed to determine the range in which Series (4)
should be used and the range in which Formula (3) can be used. Using the Theorem on Loss
of Precision, we see that the loss of bits in the subtraction of Formula (3) can be limited
to at most one bit by restricting x so that 1 <1 — sinx/x. (Here we are considering only
the case when sinx > 0.) With a calculator, it is easy to see that x must be at least 1.9.
Thus, for |x| < 1.9, we use the first few terms in the Series (4), and for |x| > 1.9, we use
f(x) = x — sinx. One can verity that for the worst case (x = 1.9), ten terms in the series
give f(x) with an error of at most 1076, (That is good enough for double precision on a
32-bit word-length computer.)

To construct a function procedure for f(x), notice that the terms in the series can be
obtained inductively by the algorithm

x3

Hh=—
6
—t,x?

= Ghrnanty | D

Then the partial sums can be obtained inductively by

S =1
Sn+1 = Sp + lnt1 (nz1)

so that

n n oy [ xH
Sp = ;l‘k = Z(—l) {m}

k=1
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Solution

EXAMPLE 4

Suitable pseudocode for a function is given here:

real function f(x)
integer i, n < 10; reals, ¢, x
if |x| > 1.9 then
§ < Xx —sinx
else
t < x3/6
s <t
fori =2 ton do
t < —tx?/[(2i +2)(2i +3)]
s <—s+1
end for
end if
f<s
end function f

How can accurate values of the function
fa)y=e —e
be computed in the vicinity of x = 0?

Since ¢* and e~ are both equal to 1 when x = 0, there will be a loss of significance

because of subtraction when x is close to zero. Inserting the appropriate Taylor series, we

obtain
_ (i xz X -2 4x*  8x°
f(x)— +X+E+§+"' - —x“rj—?‘i‘“'

3
=3x— St ox0 o

An alternative is to write

f(x) — e—Zx(e3x _ 1)

9 27

_ 2 A L BT

=e (3x+2!x —|—3!x—|— )
By using the Theorem on Loss of Precision, we find that at most one bit is lost in the
subtraction e* — e=>* when x > 0 and
1 672)(
I -
2 e’
This inequality is valid when x > %1n2 = 0.23105. Similar reasoning when x < 0 shows
that for x £ — 0.23105, at most one bit is lost. Hence, the series should be used for |x| <
0.23105. u

A

Criticize the assignment statement

Yy <« cos?(x) — sin®(x)
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EXAMPLE 6

Solution
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When cos?(x) — sin’(x) is computed, there will be a loss of significance at x = 7 /4 (and
other points). The simple trigonometric identity

c0s 20 = cos* 6 — sin? @
should be used. Thus, the assignment statement should be replaced by

y < cos(2x) [ |

Criticize the assignment statement

y <« In(x) —1

If the expression Inx — 1 is used for x near e, there will be a cancellation of digits and
a loss of accuracy. One can use elementary facts about logarithms to overcome the diffi-
culty. Thus, we have y = Inx — 1 = Inx — Ine = In(x/e). Here is a suitable assignment
statement
X
y < ln(—) [

e

Range Reduction

Another cause of loss of significant figures is the evaluation of various library functions
with very large arguments. This problem is more subtle than the ones previously discussed.
We illustrate with the sine function.

A basic property of the function sinx is its periodicity:

sinx = sin(x 4+ 2nmw)

for all real values of x and for all integer values of n. Because of this relationship, one needs
to know only the values of sinx in some fixed interval of length 27 to compute sin x for
arbitrary x. This property is used in the computer evaluation of sinx and is called range
reduction.

Suppose now that we want to evaluate sin(12532.14). By subtracting integer multiples
of 2mr, we find that this equals sin(3.47) if we retain only two decimal digits of accuracy. From
sin(12532.14) = sin(12532.14 — 2km), we want 12532 = 2km and k = 3989/27 ~ 1994.
Consequently, we obtain 12532.14 — 2(1994)7r = 3.49 and sin(12532.14) = sin(3.49).
Thus, although our original argument 12532.14 had seven significant figures, the reduced
argument has only three. The remaining digits disappeared in the subtraction of 3988s.
Since 3.47 has only three significant figures, our computed value of sin(12532.14) will
have no more than three significant figures. This decrease in precision is unavoidable if
there is no way of increasing the precision of the original argument. If the original argument
(12532.14 in this example) can be obtained with more significant figures, these additional
figures will be present in the reduced argument (3.47 in this example). In some cases,
double- or extended-precision programming will help.

For sin x, how many binary bits of significance are lost in range reduction to the interval
[0, 2m)?

Given an argument x > 2w, we determine an integer n that satisfies the inequality
0<x —2nm <2m. Then in evaluating elementary trigonometric functions, we use
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f(x) = f(x — 2nm). In the subtraction x — 2ns, there will be a loss of significance.
By the Theorem on Loss of Precision, at least ¢ bits are lost if

1_2n_n§2*q
X

Since
2nr x —2nm 2w
l-— =< —
X X X
we conclude that at least ¢ bits are lost if 277/x <279, Stated otherwise, at least ¢ bits are
lost if 29 < x /2. [ |

Summary

(1) To avoid loss of significance in subtraction, one may be able to reformulate the expression
using rationalizing, series expansions, or mathematical identities.

(2) If x and y are positive normalized floating-point machine numbers with

27— Lo

X

then at most p and at least g significant binary bits are lost in computing x — y. Note that
it is permissible to leave out the hypothesis x > y here.

Additional References

For supplemental study and reading of material related to this chapter, see Appendix B as
well as the following references: Acton [1996], Bornemann, Laurie, Wagon, and Waldvogel
[2004], Goldberg [1991], Higham [2002], Hodges [1983], Kincaid and Cheney [2002],
Overton [2001], Salamin [1976], Wilkinson [1963], and others listed in the Bibliography.

Problems 2.2

1. How can values of the function f(x) = +/x + 4 — 2 be computed accurately when x
is small?

2. Calculate f(1072) for the function f(x) = ¢* — x — 1. The answer should have five
significant figures and can easily be obtained with pencil and paper. Contrast it with
the straightforward evaluation of f(1072) using ¢*' ~ 1.0101.

3. What is a good way to compute values of the function f(x) = ¢* — e if full machine
precision is needed? Note: There is some difficulty when x = 1.

“4. What difficulty could the following assignment cause?
y < 1 —sinx

Circumvent it without resorting to a Taylor series if possible.



