

Why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small segment header
- no congestion control: UDP can blast away as fast as desired
- often used for streaming multimedia apps
 > loss tolerant
 > rate sensitive
- other UDP uses \rightarrow DNS and SNMP
- Suitable for multicasting
- reliable transfer over UDP: add reliability at application layer

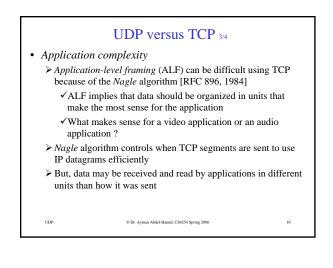
 application-specific error recovery!
 - © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

UDP versus TCP 1/4

- Choice of UDP versus TCP is based on
 Functionality
 - > Performance
- Performance

UDP

TCP's window-based flow control scheme leads to bursty bulk transfers (not rate based)


© Dr. Avman Abdel-Hamid, CS4254 Spring 2000

- > TCP's "slow start" algorithm can reduce throughput
- > TCP has extra overhead per segment
- > UDP can send small, inefficient datagrams

UDP versus TCP 2/4

- Reliability
 - > TCP provides reliable, in-order transfers
 - UDP provides unreliable service application must accept or deal with ✓ Packet loss due to overflows and errors
 - ✓ Out-of-order datagrams
- Multicast and broadcast
 - ≻ Supported only by UDP
 - TCP's error control scheme does not lend itself to reliable multicast

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

UDP versus TCP 4/4

- Nagle Algorithm
 - Tinygrams (small datagrams) can cause congestion in WANs"Small" means less than the segment size
 - ✓ Think what is the datagram size for 1 byte of data?
 - > A TCP connection can have only one outstanding small segment that has not yet been acknowledged
 - No additional small segments can be sent until the acknowledgment is received.
 - small amounts of data are collected by TCP and sent in a single segment when the acknowledgment arrives

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

11

2