
1

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

Transmission Control Protocol (TCP)

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•Transmission Control Protocol

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Transport Layer 1/2

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

Transport Layer 2/2

Process-to-process delivery

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

Transport Layer Addressing
Addresses

•Data link layer MAC address
•Network layer IP address
•Transport layer Port number (choose among multiple
processes running on destination host)

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

Port Numbers
•Port numbers are 16-bit integers (0 65,535)

Servers use well know ports, 0-1023 are privileged
Clients use ephemeral (short-lived) ports

•Internet Assigned Numbers Authority (IANA) maintains a list of
port number assignment

Well-known ports (0-1023) controlled and assigned by
IANA

Registered ports (1024-49151) IANA registers and lists
use of ports as a convenience (49151 is ¾ of 65536)

Dynamic ports (49152-65535) ephemeral ports
For well-known port numbers, see /etc/services on a UNIX or

Linux machine

2

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

Socket Addressing
•Process-to-process delivery needs two identifiers

IP address and Port number
Combination of IP address and port number is called a

socket address (a socket is a communication endpoint)
Client socket address uniquely identifies client process
Server socket address uniquely identifies server process

•Transport-layer protocol needs a pair of socket addresses
Client socket address
Server socket address
For example, socket pair for a TCP connection is a 4-tuple

Local IP address, local port, and
foreign IP address, foreign port

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

Multiplexing and Demultiplexing
Multiplexing

Sender side may have
several processes that
need to send packets
(albeit only 1 transport-
layer protocol)

Demultiplexing
At receiver side, after
error checking and
header dropping,
transport-layer delivers
each message to
appropriate process

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

Transmission Control Protocol 1/10

•TCP must perform typical transport layer functions:
Segmentation breaks message into packets
End-to-end error control since IP is an unreliable Service
End-to-end flow control to avoid buffer overflow
Multiplexing and demultiplexing sessions

•TCP is [originally described in RFC 793, 1981]
Reliable
Connection-oriented virtual circuit
Stream-oriented users exchange streams of data
Full duplex concurrent transfers can take place in both

directions
Buffered TCP accepts data and transmits when appropriate

(can be overridden with “push”)
TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

Transmission Control Protocol 2/10

•Reliable
requires ACK and performs retransmission
If ACK not received, retransmit and wait a longer time for

ACK. After a number of retransmissions, will give up
How long to wait for ACK? (dynamically compute RTT for

estimating how long to wait for ACKs, might be ms for LANs or
seconds for WANs)

RTT = α * old RTT + (1- α)* new RTT where α usually 90%

Most common, Retransmission time = 2* RTT
Acknowledgments can be “piggy-backed” on reverse direction

data packets or sent as separate packets

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

Transmission Control Protocol 3/10

•Sequence Numbers
Associated with every byte that it sends
To detect packet loss, reordering and duplicate removal

Two fields are used sequence number and acknowledgment
number. Both refer to byte number and not segment number

Sequence number for each segment is the number of the first
byte carried in that segment

The ACK number denotes the number of the next byte that
this party expects to receive (cumulative)

If an ACK number is 5643 received all bytes from beginning up to
5642

This acknowledges all previous bytes as received error-free
TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

Transmission Control Protocol 4/10

•Sending and Receiving buffers
Senders and receivers may not produce and consume data at

same speed
2 buffers for each direction (sending and receiving buffer)

3

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

Transmission Control Protocol 5/10

•TCP uses a sliding window mechanism for flow control
•Sender maintains 3 pointers for each connection

Pointer to bytes sent and acknowledged
Pointer to bytes sent, but not yet acknowledged

Sender window includes bytes sent but not acknowledged
Pointer to bytes that cannot yet be sent

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

Transmission Control Protocol 6/10

•Flow Control
Tell peer exactly how many bytes it is willing to accept

(advertised window sender can not overflow receiver buffer)
Sender window includes bytes sent but not acknowledged
Receiver window (number of empty locations in receiver buffer)
Receiver advertises window size in ACKs

Sender window <= receiver window (flow control)
Sliding sender window (without a change in receiver’s advertised

window)
Expanding sender window (receiving process consumes data faster than

it receives receiver window size increases)
Shrinking sender window (receiving process consumes data more

slowly than it receives receiver window size reduces)
Closing sender window (receiver advertises a window of zero)

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

Transmission Control Protocol 7/10

•Error Control
Mechanisms for detecting corrupted segments, lost segments,

out-of-order segments, and duplicated segments
Tools: checksum (corruption), ACK, and time-out (one time-

out counter per segment)
Lost segment or corrupted segment are the same situation:

segment will be retransmitted after time-out (no NACK in
TCP)

Duplicate segment (destination discards)
Out-of-order segment (destination does not acknowledge,

until it receives all segments that precede it)
Lost ACK (loss of an ACK is irrelevant, since ACK

mechanism is cumulative)
TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

Transmission Control Protocol 8/10

•Congestion Control

TCP assumes the cause of a lost segment is due to congestion
in the network

If the cause of the lost segment is congestion, retransmission of
the segment does not remove the problem, it actually aggravates
it

The network needs to tell the sender to slow down (affects the
sender window size in TCP)

Actual window size = Min (receiver window size, congestion
window size)

The congestion window is flow control imposed by the sender

The advertised window is flow control imposed by the receiver

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Transmission Control Protocol 9/10

•Congestion Control

0
4
8
12
16
20
24
28
32
36
40
44

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Transmission number

co
ng

es
tio

n
w

in
do

w
 s

iz
e

in
 K

by
te

s

Series1

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 18

Transmission Control Protocol 10/10

•Full-Duplex
send and receive data in both directions.
Keep sequence numbers and window sizes for each direction

of data flow

4

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 19

TCP Connection Establishment

Passive open

SYN: Synchronize
ACK: Acknowledge

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 20

TCP Options
Each SYN can contain TCP options

•MSS Option
maximum segment the maximum amount of data it is

willing to accept in each TCP segment
Sending TCP uses receiver’s MSS as its MSS

•Window Scale Option
maximum window is 65,535 bytes (corresponding field in

TCP header occupies 16 bits)
it can be scaled (left-shifted) by 0-14 bits providing a

maximum of 65,535 * 214 bytes (one gigabyte)
Option needed for high-speed connections or long delay paths

In this case, the other side must send the option with its
SYN

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 21

TCP MSS and output
•TCP MSS is = (interface MTU – fixed sizes of IP and TCP headers (20 bytes))

MSS on an Ethernet (IPv4)= 1460 bytes (1500 (why?) - 40)
•Successful return from write implies you can reuse application buffer

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 22

TCP Connection Termination

•FIN: Finish
•Step 1 can be sent with data
•Steps 2 and 3 can be combined into 1 segment

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 23

State Transition Diagram 1/4

Typical TCP
states visited
by a TCP
client

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 24

State Transition Diagram 2/4

Typical
TCP
states
visited by
a TCP
server

5

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 25

State Transition Diagram 3/4

The server is waiting for the application to close.CLOSE-WAIT
The server is waiting for the last acknowledgment.LAST-ACK

The other side has accepted the closing of the connection.FIN-WAIT-2
Waiting for retransmitted segments to die.TIME-WAIT

Connection is established.ESTABLISHED
The application has requested the closing of the
connection.FIN-WAIT-1

A connection request is sent; waiting for acknowledgment.SYN-SENT
A connection request is received.SYN-RCVD

The server is waiting for calls from the client.LISTEN
There is no connection.

Description

CLOSED

State

Can use netstat command to see some TCP states
TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 26

State Transition Diagram 4/4

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 27

Packet Exchange

Send 1-segment
request and receive 1-
segment reply

Piggybacking
feature

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 28

TIME_WAIT State
•The end that performs the active close goes through this state
•Duration spent in this state is twice the maximum segment life (2
MSL)

MSL: maximum amount of time any given IP can live in the network

•Every TCP implementation must choose a value for MSL
Recommended value is 2 minutes (traditionally used 30 seconds)

•TIME_WAIT state motives
allow old duplicate segments to expire in the network (relate to connection

incarnation)
TCP will not initiate a new incarnation of a connection that is in

TIME_WAIT state
Implement TCP’s full-duplex connection termination reliably

The end that performs the active close might have to resend the final
ACK

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 29

TCP Segment Format

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 30

TCP Header Fields 1/2

•Source Port and Destination Port
Identify processes at ends of the connection

•Control bits
URG urgent (urgent data present)
ACK acknowledgment
PSH push request

Inform receiver TCP to send data to application ASAP

RST reset the connection
SYN synchronize sequence numbers
FIN sender at end of byte stream

6

TCP © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 31

TCP Header Fields 2/2

•Sequence Number: position of the data in the sender’s byte stream

•Acknowledgment Number: position of the byte that the source
expects to receive next (valid if ACK bit set)

•Header Length: header size in 32-bit units. Value ranges from [5-15]

•Window: advertised window size in bytes

•Urgent
defines end of urgent data (or “out-of-band”) data and start of normal data

Added to sequence number (valid only if URG bit is set)

•Checksum: 16-bit CRC (Cyclic Redundancy Check) over header
and data

•Options: up to 40 bytes of options

