
1

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

Sockets Programming Introduction

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•Sockets API and abstraction

•Simple Daytime client

•Wrapper functions

•Simple Daytime Server

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Sockets API
API is Application Programming Interface
•Sockets API defines interface between application and
•transport layer

two processes communicate by sending data into socket,
reading data out of socket

•Socket interface gives a file system like abstraction to the
capabilities of the network
•Each transport protocol offers a set of services

The socket API provides the abstraction to access these
services

•The API defines function calls to create, close, read and write
to/from a socket

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

Sockets Abstraction
The socket is the basic abstraction for network communication in
the socket API

Defines an endpoint of communication for a process
Operating system maintains information about the socket and

its connection
Application references the socket for sends, receives, etc

2

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

Simple Daytime Client 1/5

•Source code available from http://www.unpbook.com
•Read README file first!
•Source file is daytimetcpcli.c

•Include “unp.h”
Textbook’s header file
Includes system headers needed by most network programs
Defines various constants such as MAXLINE

•Create TCP Socket
sockfd = socket (AF_INET, SOCK_STREAM, 0)
Returns a small integer descriptor used to identify socket
If returned value < 0 then error

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

Simple Daytime Client 2/5

Socket Descriptors
•Operating system maintains a set of socket descriptors for each
process Note that socket descriptors are shared by threads
•Three data structures

Socket descriptor table Socket data structure Address data structure

AF_INET

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

Simple Daytime Client 3/5

•Specify Server IP Address and Port
•Fill an Internet socket address structure with server’s IP address and
port

•Set entire structure to zero first using bzero

•Set address family to AF_INET

•Set port number to 13 (well-known port for daytime server on host
supporting this service)

•Set IP address to value specified as command line argument (argv[1])

•IP address and port number must be in specific format

•htons host to network short

•inet_pton presentation to numeric, converts ASCII dotted-decimal
command line argument (128.82.4.66) to proper format

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

Simple Daytime Client 4/5

•Establish connection with server
•Connect (sockfd, (SA *) &servaddr, sizeof(servaddr))

•Establish a TCP connection with server specified by socket address
structure pointed to by second argument

•Specify length of socket address structure as third argument

•SA is #defined to be struct sockaddr in unp.h

•Read and Display server reply
Server reply normally a 26-byte string of the form

Mon May 26 20:58:40 2003\r\n

TCP a byte-stream protocol, always code the read in a loop and
terminate loop when read returns 0 (other end closed connection) or value
less than 0 (error)

3

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

Simple Daytime Client 5/5

•Terminate program
Exit terminates the program exit (0)

Unix closes all open descriptors when a process terminates

TCP socket closed

•Program protocol dependent on IPv4, will see later how to
change to IPv6 and even make it protocol independent

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

Error Handling: Wrapper Functions
•Check every function call for error return

•In previous example, check for errors from socket, inet_pton,
connect, read, and fputs

•When error occurs, call textbook functions err_quit and err_sys
to print an error message and terminate the program

•Define wrapper functions in lib/wrapsock.c

•Unix errno value
When an error occurs in a Unix function, global variable errno is set to

a positive value indicating the type of error and the function normally
returns -1

err_sys function looks at errno and prints corresponding error message
(e.g., connection timed out)

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

Simple Daytime Server 1/2

•Source code in daytimetcpsrv.c

•Create a TCP Socket
Identical to client code

•Bind server well-known port to socket
Fill an Internet socket address structure
Call Bind (wrapper function) local protocol address bound to socket
Specify IP address as INADDR_ANY: accept client connection on any

interface (if server has multiple interfaces)

•Convert socket to listening socket
Socket becomes a listening socket on which incoming connections

from clients will be accepted by the kernel
LISTENQ (defined in unp.h) specifies the maximum number of client

connections the kernel will queue for this listening descriptor
Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

Simple Daytime Server 2/2

•Accept client connection, send reply
Server is put to sleep (blocks) in the call to accept

After connection accepted, the call returns and the return value is a new
descriptor called the connected descriptor

New descriptor used for communication with the new client

•Terminate connection
Initiate a TCP connection termination sequence

Some Comments
Server handles one client at a time

If multiple client connections arrive at about the same time, kernel
queues them up, up to some limit, and returns them to accept one at a
time (An example of an iterative server, other options?)

4

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

IPv4 Socket Address Structure
struct in_addr {

in_addr_t s_addr ; // 32-bit, IPv4 network byte order (unsigned)
}

struct sockaddr_in {
uint8_t sin_len; /*unsigned 8 bit integer*/
sa_family_t sin_family; /*AF_INET*/
in_port_t sin_ port ; /* 16 bit TCP or UDP port number */
struct in_addr sin_addr; /* 32 bit IPv4 address */
char sin _zero[8]; /*unused*/

}
struct sockaddr_in servaddr;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

Generic Socket Address Structure
•A socket address structure always passed by reference when passed
as an argument to any socket function
•How to declare the pointer that is passed?
•Define a generic socket address structure
struct sockaddr {

uint8_t sa_len; /*unsigned 8 bit integer*/
sa_family_t sa_family; /*AF_INET*/
char sa_data[14] ; /* protocol specific address*/

}
Prototype for bind
int bind (int, struct sockaddr * socklen_t)

struct sockaddr_in serv;
bind (sockfd, (struct sockaddr *) &serv,sizeof(serv));
Or #define SA struct sockaddr bind (sockfd, (SA *) &serv, sizeof(serv));

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

Value-Result Arguments
•Length of socket passed as an argument
•Method by which length is passed depends on which direction the
structure is being passed (from process to kernel, or vice versa)

•Value-only: bind, connect, sendto (from process to kernel)
•Value-Result: accept, recvfrom, getsockname, getpeername (from
kernel to process, pass a pointer to an integer containing size)

Tells process how much information kernel actually stored

struct sockaddr_in clientaddr ;
socklen_t len;
int listenfd, connectfd;

len = sizeof (clientaddr);
connectfd = accept (listenfd, (SA *) &clientaddr, &len); Sockets Programming

Introduction
© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

Byte Ordering Functions 1/4

•Two ways to store 2 bytes (16-bit integer) in memory
Low-order byte at starting address little-endian byte order
High-order byte at starting address big-endian byte order

•in a big-endian computer store 4F52
Stored as 4F52 4F is stored at storage address 1000, 52 will be

at address 1001, for example

•In a little-endian system store 4F52
it would be stored as 524F (52 at address 1000, 4F at 1001)

•Byte order used by a given system known as host byte order
•Network programmers use network byte order
•Internet protocol uses big-endian byte ordering for integers (port
number and IP address)

5

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Byte Ordering Functions 2/4

High-order byte low-order byte

MSB 16bit value LSB

High-order byte low-order byte

Increasing memory

address

Address A+1 Address A
Little-endian byte order:

big-endian byte order:

Address A+1Address A
Increasing memory

address
Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 18

Byte Ordering Functions 3/4

#include "unp.h"
int main(int argc, char **argv)
{

union {
short s;
char c[sizeof(short)];

} un;

un.s = 0x0102;
printf("%s: ", CPU_VENDOR_OS);
if (sizeof(short) == 2) {

if (un.c[0] == 1 && un.c[1] == 2)
printf("big-endian\n");

else if (un.c[0] == 2 && un.c[1] == 1)
printf("little-endian\n");

else
printf("unknown\n");

} else
printf("sizeof(short) = %d\n", sizeof(short));

exit(0);
}

•Sample program to figure out
little-endian or big-endian
machine

•Source code in byteorder.c

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 19

Byte Ordering Functions 4/4

•To convert between byte orders
Return value in network byte order

htons (s for short word 2 bytes)
htonl (l for long word 4 bytes)

Return value in host byte order
ntohs
ntohl

•Must call appropriate function to convert between host and
network byte order
•On systems that have the same ordering as the Internet protocols,
four functions usually defined as null macros
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(13);

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 20

Byte Manipulation Functions
#include <strings.h>
void bzero (void *dest, size_t nbytes);
// sets specified number of bytes to 0 in the destination

void bcopy (const void *src,void * dest, size_t nbytes);
// moves specified number of bytes from source to destination

void bcmp (const void *ptr1, const void *ptr2,size_t nbytes)
//compares two arbitrary byte strings, return value is zero if two
byte strings are identical, otherwise, nonzero

6

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 21

Address Conversion Functions 1/2

Convert an IPv4 address from a dotted-decimal string
“206.168.112.96” to a 32-bit network byte order binary value

#include <arpa/inet.h>
int inet_aton (const char* strptr, struct in_addr *addrptr);
// return 1 if string was valid, 0 on error. Address stored in *addrptr

in_addr_t inet_addr (const char * strptr);
// returns 32 bit binary network byte order IPv4 address, currently deprecated

char * inet_nota (struct in_addr inaddr);
//returns pointer to dotted-decimal string

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 22

Address Conversion Functions 2/2

To handle both IPv4 and IPv6 addresses
#include <arpa/inet.h>
int inet_pton (int family, const char* strptr, void *addrptr);
// return 1 if OK, 0 on error. 0 if not a valid presentation, -1 on error, Address
stored in *addrptr

Const char * inet_ntop (int family, const void* addrptr, char *strptr,
size_t len);
// return pointer to result if OK, NULL on error

if (inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0)
err_quit("inet_pton error for %s", argv[1]);

ptr = inet_ntop (AF_INET,&addr.sin_addr,str,sizeof(str));

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 23

Reading and Writing Functions 1/2

int send (int socket, char *message, int msg_len, int flags) (TCP)

int sendto (int socket, void *msg, int len, int flags, struct sockaddr *

to, int tolen); (UDP)

int write(int socket, void *msg, int len); /* TCP */

int recv (int socket, char *buffer, int buf_len, int flags) (TCP)

int recvfrom(int socket, void *msg, int len, int flags, struct sockaddr

*from, int *fromlen); (UDP)

int read(int socket, void *msg, int len); (TCP)

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 24

Reading and Writing Functions 2/2

•Stream sockets (TCP sockets) exhibit a behavior with read and
write that differs from normal file I/O
•A read or write on a stream socket might input or output fewer
bytes than requested (not an error)

readn function
writen function
readline function

