CS4254

Computer Network Architecture and Programming

Dr. Ayman A. Abdel-Hamid

Computer Science Department Virginia Tech

Multicasting - Part I

Multicasting Part I

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

Outline

•Multicasting (Chapter 21)

- ≻Multipoint Communications
- ≻IP Multicast
- ≻IGMP

Multicasting Part I

- ➤Multicast Routing
- ≻IPv4 Multicast addresses
- ➤Sending and Receiving Multicast Messages

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

Multipoint Communications

Multipoint communications support communications between more than two hosts

- ≻One-to-many
- ≻Many-to-many
- ·Unlike broadcast, allows a proper subset of hosts to participate

•Example standards

ting Part I

≻IP Multicast (RFC 1112, standard)

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

Logical Multipoint Communications

- •Two basic logical organizations
 - **Rooted**: hierarchy (perhaps just two levels) that structures communications
 - >Non-rooted: peer-to-peer (no distinguished nodes)

•Different structure could apply to control and data "planes"

Control plane determines how multipoint session is created

Multicasting Part I

>Data plane determines how data is transferred between hosts in the multipoint session

3

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

Logical Multipoint Communications

Control Plane

•The control plane manages creation of a multipoint session

► Rooted control plane

- \checkmark One member of the session is the root, *c* root
- ✓ Other members are the leafs, c_{leafs}
- ✓Normally *c_root* establishes a session
- □Root connects to one or more *c* leafs
- $\Box c$ leafs join c root after session established

© Dr. Ayman Abdel-Hamid, CS4254 Spring 200

►Non-rooted control plane

- \checkmark All members are the same (*c* leafs)
- ✓ Each leaf adds itself to the session

Multicasting Part I

Logical Multipoint Communications

Data Plane

The data plane is concerned with data transfer •Rooted data plane Special root member, *d_root* >Other members are leafs, d leafs Data transferred between *d* leafs and *d* roots $\checkmark d_leaf$ to d_root $\checkmark d_root$ to d_leaf \triangleright There is no direct communication between *d* leafs •Non-rooted data plane ≻No special members, all are *d_leafs* Every *d_leafs* communicate with all *d_leafs* © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 Multicasting Part I

Forms of Multipoint Communications

·Server-based -- rooted multipoint communications with server as d root

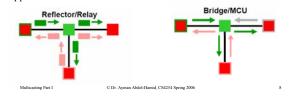
▶ Passive or inactive

- ✓Relay
- ✓ Reflector
- ≻Active

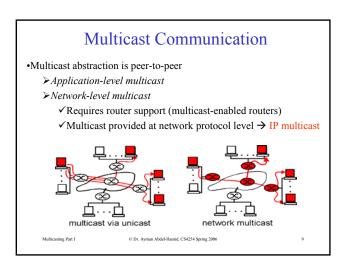
✓ Bridge or multipoint control unit (MCU)

•Strictly peer-to-peer multipoint - Non-rooted

≻Multicast sting Part I


nan Abdel-Hamid, CS4254 Spring 200

Passive Multipoint Server Active Multipoint Server •a relay or reflector service ·Provides no processing of the processing ≻transcoding


•Minimum requirement is for transport-level semantics, so can operate at the transport or application level

data

Multipoint Servers

Multicast Communication

•Transport mechanism and network layer must support multicast

•Internet multicast limited to UDP (not TCP)

>*Unreliable*: No acknowledgements or other error recovery schemes (perhaps at application level)

Connectionless: No connection setup (although there is routing information provided to multicast-enabled routers)

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

► Datagram: Message-based multicast

Multicasting Part I

IP Multicast

•IP supports multicasting

≻Uses only UDP, not TCP

Special IP addresses (Class D) identify multicast groups

>Internet Group Management Protocol (IGMP) to provide group routing information

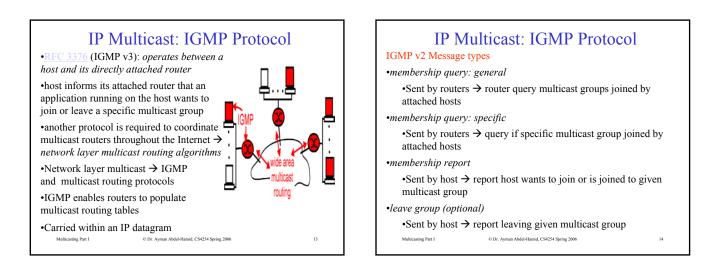
>Multicast-enabled routers selectively forward multicast datagrams

>IP TTL field limits extent of multicast

•Requires underlying network and adapter to support broadcast or, preferably, multicast

Ethernet (IEEE 802.3) supports multicast

•How to identify the receivers of a multicast datagram? •How to address a datagram sent to these receivers? Each multicast datagram to carry the IP addresses of all recipients? \rightarrow Not scalable for large number of recipients > Use address indirection ✓ A single identifier used for a group of receivers 128.59.16.20 128.119.40 128.34.108.63 28.34.108.6C


12

IP Multicast: Group Address

asting Part I

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

11

IP Multicast: IGMP Protocol

•Joining a group

 \succ Host sends group report when the first process joins a given group

>Application requests join, service provider (end-host) sends report

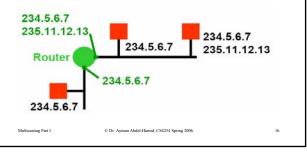
•Maintaining routing table at the router

>Multicast router periodically queries for group information

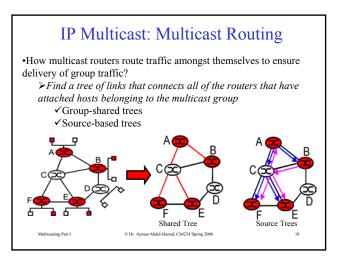
>Host (service provider) replies with an IGMP report for each group

>Host does not notify router when the last process leaves a group \rightarrow this is discovered through the lack of a report for a query

Multicasting Part I

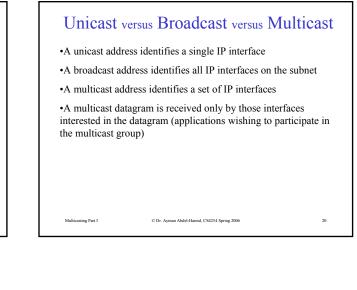

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

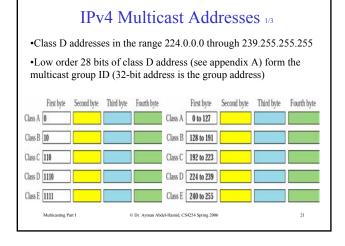
15


IP Multicast: Multicast Routing

•Multicast routers *do not* maintain a list of individual members of each host group

•Multicast routers do associate zero or more host group addresses with each interface




MBONE: Internet Multicast Backbone The MBone is a virtual network on top of the Internet (section B.2) Routers that support IP multicast IP tunnels between such routers and/or subnets IP tunnels between such routers and/or subnets Multicast router Route via tunnels Encapsulates IP in IP May do multiple sends


© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

19

ing Part I

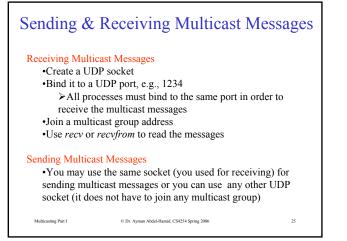
IPv4 Multicast Addresses 2/3

224.0.1.88 mapped into an Ethernet address?

•Remember an Ethernet address is 48 bits

•The address 224 is E0 in hex, 0 is 00 in hex, 1 is 01 in hex, and 88 is 58 in hex. However, only the low-order 23 bits are used

•Therefore, the IP address of 224.0.1.88 converted to a MAC address is 01-00-5E-00-01-58.


•224.0.0.0 — 224.0.0.255 reserved for routing, topology discovery, maintenance protocols >Not forwarded by routers (TTL = 1) ≥224.0.0.0 reserved ≥224.0.0.1 all-host group ▶224.0.0.2 all-routers group •224.0.0.0 - 232.255.255.255 assigned (RFC 1700, http://www.ietf.org/rfc/rfc1700.txt?number=1700) •239.000.000.000 - 239.255.255.255 are "administratively scoped" (RFC 2365) >239.192.000.000 - 239.251.255.255 organization-local scope >239.255.000.000 - 239.255.255.255 site-local scope (TTL < 32) Multicasting Part I © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 24

IPv4 Multicast Addresses 3/3

alticasting Part I

Dr. Ayman Abdel-Hamid, CS4254 Spring 2008

23

