
1

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

I/O Multiplexing

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•I/O Multiplexing (Chapter 6)
Introduction
I/O Models
Synchronous I/O versus Asynchronous I/O
select function
TCP echo client using select
Shutdown function
TCP Echo Server
TCP and UDP Echo Server using select (section 8.15)

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Introduction 1/2

• TCP echo client is handling two inputs at the same time:
standard input and a TCP socket

when the client was blocked in a call to read, the server
process was killed

server TCP sends FIN to the client TCP, but the client
never sees FIN since the client is blocked reading from
standard input

We need the capability to tell the kernel that we want to
be notified if one or more I/O conditions are ready.

I/O multiplexing (select, poll, or newer pselect
functions)

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

Introduction 2/2

• Scenarios for I/O Multiplexing
client is handling multiple descriptors (interactive input
and a network socket).

Client to handle multiple sockets (rare)

TCP server handles both a listening socket and its
connected socket.

Server handle both TCP and UDP.

Server handles multiple services and multiple protocols

2

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

I/O Models
• Models

Blocking I/O

Nonblocking I/O

I/O multiplexing(select and poll)
Signal driven I/O (SIGIO)

Asynchronous I/O

• Two distinct phases for an input operation
Waiting for the data to be ready (for a socket, wait for the data to
arrive on the network, then copy into a buffer within the kernel)

Copying the data from the kernel to the process (from kernel
buffer into application buffer)

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

application

recvfrom

Process
datagram

System call

Return OK

No datagram ready

Datagram ready
copy datagram

Copy complete

kernel

Process blocks
in a call to
recvfrom

Wait for
data

Copy data
from kernel
to user

Blocking I/O

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

Nonblocking I/O
application

recvfrom

Process
datagram

System call

Return OK

No datagram ready

copy datagram

application

kernel

Wait for
data

EWOULDBLOCK

recvfrom No datagram ready
EWOULDBLOCK

System call

recvfrom datagram ready
System call

Copy data
from kernel
to user

Process
repeatedly
calls recvfrom
waiting for an
OK return
(polling)

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

I/O multiplexing(select and poll)
application

select

Process
datagram

System call

Return OK

No datagram ready

Datagram ready
copy datagram

Copy complete

kernel

Wait for
data

Return readable

recvfrom
Copy data
from kernel
to user

Process blocks
in a call to
select, waiting
for one of
possibly many
sockets to
become readable

Process blocks
while data
copied
into application
buffer

System call

3

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

Signal driven I/O (SIGIO)
application

Establish SIGIO

Process
datagram

System call

Return OK

Datagram ready
copy datagram

Copy complete

kernel

Wait for
data

Deliver SIGIO

recvfrom Copy data
from kernel
to user

Process
continues
executing

Process blocks
while data
copied
into application
buffer

Sigaction system call

Return
Signal handler

Signal handler

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

Asynchronous I/O
application

aio_read

Signal
handler
Process
datagram

System call

Deliver signal

No datagram ready

Datagram ready
copy datagram

Copy complete

kernel

Process
continues
executing

Wait for
data

Copy data
from kernel
to user

Return

Specified in aio_read

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

Comparison of the I/O Models

Blocking Nonblocking
I/O

multiplexing
Signal-driven

I/O
Asynchronous
I/O

initiate

complete

check
check
check
check
check
check

complete

blocked

check

blocked

ready
initiateblocked

complete

notification
initiateblocked

complete

initiate

notification

wait for
data

copy data
from kernel
to user

1st phase handled differently,
2nd phase handled the same

handles both phases

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

Synchronous I/O , Asynchronous I/O

• Synchronous I/O
causes the requesting process to be blocked until that
I/O operation (recvfrom) completes. (blocking,
nonblocking, I/O multiplexing, signal-driven I/O)

• Asynchronous I/O
does not cause the requesting process to be blocked

4

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

select function
• Allows the process to instruct the kernel to wait for any one of

multiple events to occur and to wake up the process only when
one or more of these events occurs or when a specified amount of
time has passed.

• What descriptors we are interested in (readable ,writable , or
exception condition) and how long to wait?

#include <sys/select.h>
#include <sys/time.h>
int select (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set
*exceptset, const struct timeval *);

//Returns: +ve count of ready descriptors, 0 on timeout, -1 on error
struct timeval{

long tv_sec; /* seconds */
long tv_usec; /* microseconds */ }

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

Possibilities for select function
• Wait forever : return only when descriptor (s) is ready (specify

timeout argument as NULL)

• wait up to a fixed amount of time

• Do not wait at all : return immediately after checking the
descriptors. Polling (specify timeout argument as pointing to a
timeval structure where the timer value is 0)

• The wait is normally interrupted if the process catches a signal
and returns from the signal handler

select might return an error of EINTR

Actual return value from function = -1

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

• readset descriptors for checking readable
• writeset descriptors for checking writable
• exceptset descriptors for checking exception

conditions (2 exception conditions)
arrival of out of band data for a socket
the presence of control status information to be read
from the master side of a pseudo terminal (Ignore)

• If you pass the 3 arguments as NULL, you have a high
precision timer than the sleep function

select function Descriptor Arguments

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

Descriptor Sets
• Array of integers : each bit in each integer correspond

to a descriptor (fd_set)
• 4 macros

void FD_ZERO(fd_set *fdset); /* clear all bits in fdset */
void FD_SET(int fd, fd_set *fdset); /* turn on the bit for fd in
fdset */
void FD_CLR(int fd, fd_set *fdset); /* turn off the bit for fd in
fdset*/
int FD_ISSET(int fd, fd_set *fdset);/* is the bit for fd on in
fdset ? */

5

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Example of Descriptor sets Macros

fd_set rset;

FD_ZERO(&rset); /*all bits off : initiate*/
FD_SET(1, &rset); /*turn on bit fd 1*/
FD_SET(4, &rset); /*turn on bit fd 4*/
FD_SET(5, &rset); /*turn on bit fd 5*/

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 18

• specifies the number of descriptors to be tested.

• Its value is the maximum descriptor to be tested, plus one.
(hence maxfdp1)

Descriptors 0, 1, 2, up through and including maxfdp1-1 are
tested

example: interested in fds 1,2, and 5 maxfdp1 = 6

Your code has to calculate the maxfdp1 value

• constant FD_SETSIZE defined by including <sys/select.h>

is the number of descriptors in the fd_set datatype. (often =
1024)

maxfdp1 argument to select function

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 19

• Select modifies descriptor sets pointed to by readset, writeset,
and exceptset pointers

• On function call
Specify value of descriptors that we are interested in

• On function return
Result indicates which descriptors are ready

• Use FD_ISSET macro on return to test a specific descriptor in an
fd_set structure

Any descriptor not ready will have its bit cleared
You need to turn on all the bits in which you are interested
on all the descriptor sets each time you call select

Value-Result arguments in select function

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 20

Condition for a socket to be
ready for select

Condition Readable? writable? Exception?

Data to read
read-half of the connection closed
new connection ready for listening socket
Space available for writing
write-half of the connection closed

•
•
•

•
•

• •

•

Pending error

TCP out-of-band data

6

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 21

• Recall section 5.5 (source code is lib/str_cli.c)
• Problems with earlier version

could be blocked in the call to fgets when something
happened on the socket
We need to be notified as soon s the server process
terminates

• Alternatively
block in a call to select instead, waiting for either standard
input or the socket to be readable.

str_cli Function revisited

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 22

Condition handled by select in str_cli

Data of EOF

client

• stdin
Socket
•

error EOF

RST

TCP

data FIN

Select for readability
on either standard
input or socket

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 23

Conditions handled with the socket
• Peer TCP sends data

the socket becomes readable and read returns greater than 0
(number of bytes of data)

• Peer TCP sends a FIN (peer process terminates)
the socket become readable and read returns 0 (EOF)

• Peer TCP sends a RST (peer host has crashed and rebooted)
the socket become readable and returns -1
errno contains the specific error code

Source code in select/strcliselect01.c tested by select/tcpcli01.c
This version is OK for stop-an-wait mode (interactive input),
will modify later for batch input and buffering

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 24

select-based str_cli function 1/2

void str_cli(FILE *fp, int sockfd)
{

int maxfdp1;
fd_set rset;
char sendline[MAXLINE], recvline[MAXLINE];

FD_ZERO(&rset);
for (; ;) {

FD_SET(fileno(fp), &rset);
FD_SET(sockfd, &rset);
maxfdp1 = max(fileno(fp), sockfd) + 1;
Select(maxfdp1, &rset, NULL, NULL, NULL);

//Continue…..

7

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 25

if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
if (Readline(sockfd, recvline, MAXLINE) == 0)

err_quit("str_cli: server terminated prem");
Fputs(recvline, stdout);

}

if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */
if (Fgets(sendline, MAXLINE, fp) == NULL)

return; /* all done */
Writen(sockfd, sendline, strlen(sendline));

}
}//for

}//str_cli

select-based str_cli function 2/2

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 26

•str_cli operates in a
stop-and-wait
mode sends a line to
the server and then
waits for the reply

Assume RTT of 8 units
of time only using
one-eighth of the pipe
capacity

Ignore TCP ACKs

requestrequest

requestrequest

serverrequestrequest

requestrequest

serverreplyreply

replyreply

replyreply

replyreply

client

time1

time2

time3

time4

time5

time6

time7

time0

Batch Input and Buffering 1/2

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 27

• With batch input, can send as fast as we can
• The problem with the revised str_cli function

After the handling of an end-of-file on input, the send
function returns to the main function, that is, the program is
terminated.
However, in batch mode, there are still other requests and
replies in the pipe.

• We need a way to close one-half of the TCP connection
send a FIN to the server, telling it we have finished sending
data, but leave the socket descriptor open for reading

shutdown function

Batch Input and Buffering 2/2

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 28

Shutdown function 1/3

• Close one half of the TCP connection
send FIN to server, but leave the socket descriptor open for
reading

• Limitations with close function
decrements the descriptor’s reference count and closes the
socket only if the count reaches 0

With shutdown, can initiate TCP normal connection
termination regardless of the reference count

terminates both directions (reading and writing)
With shutdown, we can tell other end that we are done
sending, although that end might have more data to send
us

8

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 29

Shutdown function 2/3

client server
data

data
FIN

ACK of data and FIN

data
data

FIN
ACK of data and FIN

Read returns > 0
Read returns > 0
Read returns 0

write
write
close

write
write

shutdown

Read returns > 0
Read returns > 0

Read returns 0

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 30

#include<sys/socket.h>
int shutdown (int sockfd, int howto);
/* return : 0 if OK, -1 on error */

• howto argument
SHUT_RD
read-half of the connection closed
Any data in receive buffer is discarded
Any data received after this call is ACKed and then discarded

SHUT_WR
write-half of the connection closed (half-close)
Data in socket send buffer sent, followed by connection termination

SHUT_RDWR
both closed

Shutdown function 3/3

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 31

str_cli using select and shutdown 1/2

//Source code in select/ strcliselect02.c, test with select/tcpcli02.c
#include "unp.h"
void str_cli(FILE *fp, int sockfd)
{

int maxfdp1, stdineof;
fd_set rset;
char sendline[MAXLINE], recvline[MAXLINE];

stdineof = 0;
FD_ZERO(&rset);
for (; ;) {

if (stdineof == 0) // select on standard input for readability
FD_SET(fileno(fp), &rset);

FD_SET(sockfd, &rset);
maxfdp1 = max(fileno(fp), sockfd) + 1;
Select(maxfdp1, &rset, NULL, NULL, NULL);

//Continue…..
I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 32

if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
if (Readline(sockfd, recvline, MAXLINE) == 0) {

if (stdineof == 1)
return; /* normal termination */

else
err_quit("str_cli: server terminated prematurely");

}
Fputs(recvline, stdout);

}
if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */

if (Fgets(sendline, MAXLINE, fp) == NULL) {
stdineof = 1;
Shutdown(sockfd, SHUT_WR); /* send FIN */
FD_CLR(fileno(fp), &rset);
continue;

}
Writen(sockfd, sendline, strlen(sendline));

} } }

str_cli using select and shutdown 2/2

9

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 33

TCP echo server using select 1/5

• Rewrite the server as a single process that uses select to handle
any number of clients, instead of forking one child per client.

• Before first client has established a connection

Client[]

[0]
[1]
[2]

-1
-1
-1

-1[FD_SETSIZE -1]

rset:
fd0 fd1 fd2 fd3

0 0 0 1

Maxfd + 1 = 4

fd:0(stdin), 1(stdout), 2(stderr)
fd:3 listening socket fd

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 34

TCP echo server using select 2/5

• After first client connection is established (assuming connected
descriptor returned by accept is 4)

Client[]

[0]
[1]
[2]

4
-1
-1

-1[FD_SETSIZE -1]

rset:
fd0 fd1 fd2 fd3

0 0 0 1

Maxfd + 1 = 5

fd:0(stdin), 1(stdout), 2(stderr)
fd:3 listening socket fd
fd:4 first connected fd

1
fd4

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 35

TCP echo server using select 3/5

• After second client connection is established (assuming
connected descriptor returned by accept is 5)

Client[]

[0]
[1]
[2]

4
5
-1

-1[FD_SETSIZE -1]

rset:
fd0 fd1 fd2 fd3

0 0 0 1

Maxfd + 1 = 6

fd:0(stdin), 1(stdout), 2(stderr)
fd:3 listening socket fd
fd:4 first connected socket fd
fd:5 second connected socket fd

1
fd4 fd5

1

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 36

TCP echo server using select 4/5

• First client terminates its connection (fd 4 readable and read
returns 0 client TCP sent a FIN)

Client[]

[0]
[1]
[2]

-1
5
-1

-1[FD_SETSIZE -1]

rset:
fd0 fd1 fd2 fd3

0 0 0 1

Maxfd + 1 = 6

fd:0(stdin), 1(stdout), 2(stderr)
fd:3 listening socket fd
fd:5 second connected socket fd

0
fd4 fd5

1

10

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 37

TCP echo server using select 5/5

• As clients arrive, record connected socket descriptor in first
available entry in client array (first entry = -1)

• Add connected socket to read descriptor set

• Keep track of

Highest index in client array that is currently in use

Maxfd +1

• The limit on number of clients to be served

Min (FD_SETSIZE, Max (Number of descriptors allowed for
this process by the kernel))

• Source code in tcpcliserv/tcpservselect01.c

I/O Multiplexing © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 38

TCP and UDP echo server using select

• Section 8.15

• Combine concurrent TCP echo server with iterative UDP server
into a single server that uses select to multiplex a TCP and UDP
socket

• Source code in udpcliserv/udpservselect01.c
• Source code for sig_chld function (signal handler) is in

udpcliserv/sigchldpidwait.c
Handles termination of a child TCP server

See sections 5.8, 5.9, and 5.10

