
Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

Elementary TCP Sockets

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•Elementary TCP Sockets

Information to write a complete TCP client and server

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Typical Scenario between TCP client/server

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

socket Function
#include <sys/socket.h>
int socket (int family, int type, int protocol)
// returns non-negative descriptor if OK, -1 on error

family
protocol family (AF_INET IPv4 protocols, AF_INET6
IPv6 Protocols) (see Fig. 4.2)

type
(SOCK_STREAM stream socket, SOCK_DGRAM
Datagram socket) (see Fig. 4.3)

protocol
Use 0 to get system’s default given combination of family and
type (see Fig. 4.4)

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

connect Function 1/3

#include <sys/socket.h>
int connect (int sockfd, const struct sockaddr * servaddr , socklen_t
addrlen)
// returns 0 if OK, -1 on error

•No need to specify client’s source IP address or port
Kernel will choose an ephemeral port and source IP if

necessary
•Connect function initiates TCP’s three-way handshake
•Function returns only when connection is established or an error
occurs

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

connect Function 2/3

Several possible errors (The following numbers for 4.4 BSD)
Send SYN....& after 6 seconds..& after 24 seconds
if after a total of 75 seconds no SYN-ACK received

ETIMEOUT is returned
if server responds with RST

no process waiting at port hard error
ECONNREFUSED is returned

if a router returns ICMP destination unreachable (soft error)
send after 6 and 24 seconds and if no connection after 75

seconds
EHOSTUNREACH is returned

•You can't reconnect the socket to another address unless you close
and call socket again.

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

connect Function 3/3

•Try it out with the daytime TCP client/server
Successful connection
IP address on local subnet, but host nonexistent

Connection timed out
Correct local IP address, not running a daytime server

Connection refused
Unreachable Internet IP address

Intermediate router will return ICMP error
No route to host

•Reasons for RST segment
SYN arrives for a port with no listening server
TCP wants to abort an existing condition
TCP receives a segment for a connection that does not exist

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

bind Function 1/2

#include <sys/socket.h>
int bind (int sockfd, const struct sockaddr * myaddr , socklen_t
addrlen)
// assigns a local protocol address returns 0 if OK, -1 on error

Server (see daytimetcpsrv3.c in intro folder)
Normally bind to a well know port & INADDR_ANY
Using port 0: kernel choose a free port and we use getsockname to

find the selected port
When a connection is accepted, the address of the connection is

fixed and we use getsockname to find the interface IP address
You can bind to specific IP address instead of INADDR_ANY,

only connections to this address are accepted
Can generate EADDRINUSE error

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

bind Function 2/2

Client (see daytimetcpcli3.c in intro folder)
Normally do not bind to any specific port or address
As part of connect bind is implicitly called
Any ephemeral port and interface IP address is filled based

on the routing table
Use getsockname to find out the port and address

struct sockaddr_in servaddr, cliaddr;
len = sizeof(cliaddr);
Getsockname(sockfd, (SA *) &cliaddr, &len);
printf("local addr: %s\n", sock_ntop((SA *) &cliaddr, sizeof(cliaddr)));

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

listen Function 1/4

#include <sys/socket.h>
int listen (int sockfd, int backlog)
//returns 0 if OK, -1 on error

•When a socket created assumed active socket
A client socket that will issue a connect

•listen converts an unconnected socket into a passive socket
•backlog specifies maximum number of connections the kernel
should queue for this socket
•Kernel maintains 2 queues

Incomplete connection queue (only SYN received from client)
Completed connection queue (three-way handshake done)

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

listen Function 2/4

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

listen Function 3/4

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

listen Function 4/4

•Berkeley-derived implementations add a fudge-factor to the
backlog (multiplied by 1.5 backlog of 5 allows up to 8 queued
entries). See figure 4.10
•A backlog of 0 is not recommended (different implementations)
•Specifying a backlog inside source code is a problem! (growing
number of connections to handle)

Specify a value larger than supported by kernel kernel truncates value
to maximum value that it supports

Textbook uses an environment variable for backlog (see lib/wrapsock.c)

•If queues are full when client SYN arrives
Ignore arriving SYN but do not send a RST (Why?)

•Data that arrives after 3WHS, but before a call to accept should be
queued by TCP server

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

accept Function
#include <sys/socket.h>
int accept (int sockfd, struct sockaddr * cliaddr, socklen_t * addrlen)
//returns non-negative descriptor if OK, -1 on error

•cliaddr and addrlen used to return protocol address of connected
peer process
•Set to null if not interested in identifying client
•addrlen is a value-result argument
•Difference between listening socket and connected socket
•See daytimetcpsrv1.c
•getsockname return the same port number for listening and
connected socket

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

Server Concurrency

•Servers use concurrency to achieve functionality and performance

•Concurrency is inherent in the server

must be explicitly considered in server design

•Exact design and mechanisms depend on support provided by the
underlying operating system

•Achieved through

Concurrent processes

Concurrent threads (will cover later)

Can you differentiate between the two design methodologies?

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

fork Function
#include <unistd.h>
pid_t fork (void)
//returns 0 in child, process ID of child in parent, -1 on error

•A child has only 1 parent, can obtain parent ID by calling getppid
•Parent can not obtain IDs of its children unless keep track from
return of fork
•All descriptors open in parent before call to fork are shared with
child after fork returns (connected socket shared between parent
and child)
•Use fork to

Process makes a copy of itself (typical for network servers)
Process wants to execute another program (call fork then exec)

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Concurrent servers 1/3

?

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 18

Concurrent Servers 2/3

Why close of connfd by parent does not terminate connection with
the client?
•Every file or socket has a reference count
•Reference count: A count of the number of descriptors that are
currently open that refer to this file or socket

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 19

Concurrent Servers 3/3

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 20

Port Numbers and Concurrent Servers 1/2

•Main server loop
spawns a child to
handle each new
connection
•What happens if
child continues to
use the well-
known port
number while
serving a long
request?

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 21

Port Numbers and Concurrent Servers 2/2

•Another client process on client host requests a connection with
the same server

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 22

close Function

#include <unistd.h>
int close (int sockfd)
//returns 0 if OK, -1 on error

•Will try to send any data that is already queued to be sent to the
other side, then normal TCP connection termination sequence takes
place (send FIN)
•Can use an option to discard unsent data (later)

Elementary TCP Sockets © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 23

getsockname and getpeername Functions
#include <sys/socket.h>
int getsockname (int sockfd, struct sockaddr* localaddr, socklen_t *
addrlen)
Int getpeername (int sockfd, struct sockaddr* peeraddr, socklen_t
* addrlen)

•getsockname returns local protocol address associated with a
socket
•getpeername returns the foreign protocol address associated with a
socket
•getsockname will return local IP/Port if unknown (TCP client
calling connect without a bind, calling a bind with port 0, after
accept to know the connection local IP address, but use connected
socket)

