CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid

Computer Science Department

Virginia Tech

Client Server Design Alternatives

Client Server Design Aliernatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

Outline

+Client Server Design Alternatives (Chapter 30)
» Introduction
»TCP Test Client
» Different TCP Server Alternatives

»Experiments Summary

Client Server Design Alternatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Introduction 1»

« Options of process control when writing a Unix Server
> lterative server
» Fork-based, concurrent server. Spawn a child process for every client
» Single process using select to handle any number of clients
» Thread-based, concurrent server. Create one thread per client
* Two more alternatives
» Pre-forking = create a pool of child processes
» Pre-threading - create a pool of available threads
 Details for pre-forking or pre-threading
— What if there is not enough processes or threads in the pool?
— What if there are too many processes or threads in the pool?

— How can the parent and its children or threads synchronize with each
other?

Client Server Design Aliernatives © Dr. Ayman Abdel-Hamid, C$4254 Spring 2006 3

Introduction »»
+ Testing strategy

» Typical web scenario (small request to server, who responds
with data back to the client

» Run multiple instances of a client against each server,
measuring the CPU time required to service a fixed number
of client requests (see Figs 30.1 and 30.2)

» Times in figure measure CPU time required for process
control (measurement for iterative server is the baseline)

» Run client of 2 different hosts on same subnet as server.
Both clients spawn 5 children to create 5 simultaneous
connections to the server (max of 10 connections)

» Each client requests 4,000 bytes from the server

» When a pre-forked or pre-threaded server is involved, the
server creates 15 children or threads when it starts

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, C$4254 Spring 2006 4

TCP Test Client

Source code in server/client.c

* Usage

» Client <hostname or IP address of server> <Server port>
<#children> <#loops/child> <#bytes/request>
» Typical usage >client 192.168.1.20 8888 5 500 4000
» 2,500 TCP connections to server
v'500 connections from each of five children
» On each connection, 5 bytes sent to server (“4000\n”)
» 4000 bytes sent from server back to client

» Client run on 2 different hosts = total of 5000 connections
(max of 10 simultaneous connections to server)

Client Server Design Aliernatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

TCP Concurrent Server, 1 Child per Client

 Traditional Iterative Server in server/serv00.c
» Source code in server/serv01.c and server/web_child.c
¢ Problem is the amount of CPU time it takes to fork a child for
each client
* Handles SIGCHLD
» Handles SIGINT for data collection upon user input (terminal
interrupt key)
» Print CPU time required for the program
» Source code in server/pr_cpu_time.c

« Return resource utilization of calling process and terminated
children of calling process

« Total user time and total system time
* Results are in row 1 of Fig. 30.1 (largest CPU time)

Client Server Design Alternatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

TCP Pre-forked Server
No Locking around Accept 12
Server pre-forks a number of children when it starts
Children ready to service clients
How many children to pre-fork?
What happens if number of children equals number of clients?
» Can monitor the number of available children

v Drops below some threshold - fork additional

v Number of available children exceeds some threshold = terminate
some of the excess children

Source code in server/serv02.c and server/child02.c
» Usage: >serv02 [<host>] <port#> <#children>

Need a new SIGINT handler since getrusage() reports resource
utilization of terminated children = terminate all children before
calling pr_cpu_time

Client Server Design Aliernatives © Dr. Ayman Abdel-Hamid, C$4254 Spring 2006 7

TCP Pre-forked Server

No Locking around Accept 22

» Every child calls accept?
» 4.4BSD implementation
v'Multiple processes calling accept on the same listening descriptor
v'With N children, reference count for listening descriptor would be
N+1 (Why?)
v"When N children call accept = put to sleep by kernel
v"When first client connection arrives, all N children are awakened

v'First of the N to run obtains the connection and remaining N-1 go
back to sleep

v Thundering herd problem!
v'Results are in row 2 of Fig. 30.1

v’ Metered version to display how many client connections have
been served by each child - Source code in server/serv02m.c,
server/child02m.c, and server/meter.c

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, C$4254 Spring 2006 8

TCP Pre-forked Server
File Locking Around Accept

Multiple processes calling accept on the same listening descriptor
works only for Berkeley-derived kernels (accept implemented
within the kernel)

Some systems may not allow this (e.g., if accept implemented as
a library function - System V Kernels)

Place a lock of some form around the call to accept
This version uses POSIX file locking with fentl function
Source code in server/serv03.c and server/child03.c, and
server/lock_fentl.c
Results are in row 3 of Fig. 30.1

» Locking adds to server’s process control CPU time
Metered version in server/serv03m.c, server/child03m.c

Apache web server uses the pre-forked server with children
blocked in accept if allowed, or file locking around accept

Client Server Design Aliernatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

TCP Pre-forked Server
Thread Locking Around Accept

File locking around accept is portable to all POSIX-compliant
systems, but involves file system operations overhead

This version uses thread locking
» Have to inform thread library that mutex is shared among
different processes
» Mutex variable stored in memory that is shared between all
processes

Source code in server/serv04.c, server/child04.c, and
server/pthread_lock.c

Results in row 4 of Fig. 30.1
» Thread locking faster than file locking

Client Server Design Alternatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

TCP Pre-forked Server, Descriptor Passing

Only parent calls accept and then passes connected socket to one
child
Requires descriptor passing from parent to child
» Using a stream pipe = Unix domain stream socket
Parent must keep track of which children are busy and which are
free (to pass new connected socket to a free child)
» Data structure declared in server/child.h
Source code in server/serv05.c and server/child05.c
Results in row 5 of Fig 30.1
» Slower than “locking around accept” versions
» Overhead of writing to the stream pipe

Client distribution among children in Fig 30.2

Client Server Design Aliernatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 n

TCP Concurrent Server, 1 Thread/Client

Source code in server/serv06.c
Main thread calls accept
Results in row 6 of Fig. 30.1
Fastest so far!

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, C$4254 Spring 2006 12

TCP Pre-threaded Server, per-Thread Accept

* Create a pool of threads, where each thread calls accept
* Mutual exclusion on accept call using a mutex

* Source code in server/serv07.c, server/pthread07.h, and
server/pthread07.c

* Results in row 7 of Fig. 30.1
» Faster than create one thread per client upon connection

» Note that the numbers in Fig. 30.1 for this experiment seem
incorrect

* Client distribution among children in Fig 30.2

Client Server Design Aliernatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

TCP Pre-threaded Server
Main Thread Accept -

Create a pool of threads upon start

Only main thread calls accept and passes each client connection
one of the available threads in the pool

How to pass connected socket to thread?
» A shared array to hold connected sockets
» Main thread deposits connected sockets into array (iput index)
» Other threads retrieve from array (iget index)
» if (iget == iput) > have to wait

» Control access to array through a mutex and a condition
variable

Client Server Design Alternatives ©Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

TCP Pre-threaded Server
Main Thread Accept 2

* Source code in server/serv08.c, server/pthread08.h,
and server/pthread08.c

* Results in row 8 of Fig. 30.1

» Slower than per-thread accept—> use of mutex and
condition variable

* Client distribution among children in Fig. 30.2

Client Server Design Aliernatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

Experiments Summary -

Creating a pool of children or a pool of threads reduces
process control CPU time compared to one-fork-per-
client

* Some implementations allow multiple children or threads

to block in a call to accept, while others need some type
of lock around accept

+ Having all children or threads accept is simpler and faster

than having main thread call accept and then pass
descriptor to child or thread

» Using threads is normally faster than using processes

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, C$4254 Spring 2006 16

Experiments Summary 2»

Row | Server Description

Process Control CPU time
(Difference from baseline)

Client Server Design Aliernatives

1 | Concurrent Server, one fork per client request 20.90

2 | Pre-fork, each child calling accept 1.80

3 | Pre-forking, file locking around accept 2.07

4 | Pre-forking, thread mutex locking around 1.75
accept

5 | Pre-fork, parent passing descriptor to child 2.58

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006

