
1

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and 
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

Client Server Design Alternatives

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•Client Server Design Alternatives (Chapter 30)
Introduction
TCP Test Client
Different TCP Server Alternatives
Experiments Summary

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Introduction 1/2

• Options of process control when writing a Unix Server
Iterative server
Fork-based, concurrent server. Spawn a child process for every client
Single process using select to handle any number of clients
Thread-based, concurrent server. Create one thread per client

• Two more alternatives
Pre-forking create a pool of child processes
Pre-threading create a pool of available threads

• Details for pre-forking or pre-threading
– What if there is not enough processes or threads in the pool?
– What if there are too many processes or threads in the pool?
– How can the parent and its children or threads synchronize with each 

other?

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

Introduction 2/2

• Testing strategy
Typical web scenario (small request to server, who responds 
with data back to the client
Run multiple instances of a client against each server, 
measuring the CPU time required to service a fixed number 
of client requests (see Figs 30.1 and 30.2)
Times in figure measure CPU time required for process 
control (measurement for iterative server is the baseline)
Run client of 2 different hosts on same subnet as server. 
Both clients spawn 5 children to create 5 simultaneous 
connections to the server (max of 10 connections)
Each client requests 4,000 bytes from the server
When a pre-forked or pre-threaded server is involved, the 
server creates 15 children or threads when it starts



2

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

TCP Test Client 
• Source code in server/client.c
• Usage

Client <hostname or IP address of server> <Server port> 
<#children> <#loops/child> <#bytes/request>
Typical usage >client 192.168.1.20 8888 5 500 4000
2,500 TCP connections to server

500 connections from each of five children
On each connection, 5 bytes sent to server (“4000\n”)
4000 bytes sent from server back to client
Client run on 2 different hosts total of 5000 connections 
(max of 10 simultaneous connections to server)

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

TCP Concurrent Server, 1 Child per Client
• Traditional Iterative Server in server/serv00.c
• Source code in server/serv01.c and server/web_child.c
• Problem is the amount of CPU time it takes to fork a child for 

each client
• Handles SIGCHLD
• Handles SIGINT for data collection upon user input (terminal 

interrupt key)
Print CPU time required for the program
Source code in server/pr_cpu_time.c

• Return resource utilization of calling process and terminated 
children of calling process

• Total user time and total system time
• Results are in row 1 of Fig. 30.1 (largest CPU time)

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

TCP Pre-forked Server
No Locking around Accept 1/2

• Server pre-forks a number of children when it starts
• Children ready to service clients
• How many children to pre-fork?
• What happens if number of children equals number of clients?

Can monitor the number of available children
Drops below some threshold fork additional
Number of available children exceeds some threshold terminate 
some of the excess children

• Source code in server/serv02.c and server/child02.c
Usage: >serv02 [<host>] <port#> <#children>

• Need a new SIGINT handler since getrusage() reports resource 
utilization of terminated children terminate all children before 
calling pr_cpu_time

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

TCP Pre-forked Server
No Locking around Accept 2/2

• Every child calls accept?
4.4BSD implementation

Multiple processes calling accept on the same listening descriptor
With N children, reference count for listening descriptor would be 
N+1 (Why?)
When N children call accept put to sleep by kernel
When first client connection arrives, all N children are awakened
First of the N to run obtains the connection and remaining N-1 go 
back to sleep
Thundering herd problem!
Results are in row 2 of Fig. 30.1
Metered version to display how many client connections have 
been served by each child Source code in server/serv02m.c, 
server/child02m.c, and server/meter.c



3

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

TCP Pre-forked Server
File Locking Around Accept

• Multiple processes calling accept on the same listening descriptor 
works only for Berkeley-derived kernels (accept implemented 
within the kernel)

• Some systems may not allow this (e.g., if accept implemented as 
a library function System V Kernels)

• Place a lock of some form around the call to accept
• This version uses POSIX file locking with fcntl function
• Source code in server/serv03.c and server/child03.c, and 

server/lock_fcntl.c
• Results are in row 3 of Fig. 30.1

• Locking adds to server’s process control CPU time
• Metered version in server/serv03m.c, server/child03m.c
• Apache web server uses the pre-forked server with children 

blocked in accept if allowed, or file locking around accept
Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

TCP Pre-forked Server
Thread Locking Around Accept

• File locking around accept is portable to all POSIX-compliant 
systems, but involves file system operations overhead

• This version uses thread locking
Have to inform thread library that mutex is shared among 
different processes
Mutex variable stored in memory that is shared between all 
processes

• Source code in server/serv04.c, server/child04.c, and 
server/pthread_lock.c

• Results in row 4 of Fig. 30.1
Thread locking faster than file locking

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

TCP Pre-forked Server, Descriptor Passing
• Only parent calls accept and then passes connected socket to one 

child
• Requires descriptor passing from parent to child

Using a stream pipe Unix domain stream socket
• Parent must keep track of which children are busy and which are 

free (to pass new connected socket to a free child)
Data structure declared in server/child.h

• Source code in server/serv05.c and server/child05.c
• Results in row 5 of Fig 30.1

Slower than “locking around accept” versions
Overhead of writing to the stream pipe

• Client distribution among children in Fig 30.2
Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

TCP Concurrent Server, 1 Thread/Client

• Source code in server/serv06.c
• Main thread calls accept
• Results in row 6 of Fig. 30.1
• Fastest so far!



4

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

TCP Pre-threaded Server, per-Thread Accept
• Create a pool of threads, where each thread calls accept
• Mutual exclusion on accept call using a mutex
• Source code in server/serv07.c, server/pthread07.h, and 

server/pthread07.c
• Results in row 7 of Fig. 30.1

Faster than create one thread per client upon connection
Note that the numbers in Fig. 30.1 for this experiment seem 
incorrect

• Client distribution among children in Fig 30.2

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

TCP Pre-threaded Server
Main Thread Accept 1/2

• Create a pool of threads upon start

• Only main thread calls accept and passes each client connection 
one of the available threads in the pool

• How to pass connected socket to thread?

A shared array to hold connected sockets

Main thread deposits connected sockets into array (iput index)

Other threads retrieve from array (iget index)

if (iget == iput) have to wait

Control access to array through a mutex and a condition 
variable

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

TCP Pre-threaded Server
Main Thread Accept 2/2

• Source code in server/serv08.c, server/pthread08.h, 
and server/pthread08.c

• Results in row 8 of Fig. 30.1

Slower than per-thread accept use of mutex and 
condition variable

• Client distribution among children in Fig. 30.2

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

Experiments Summary 1/2

• Creating a pool of children or a pool of threads reduces 
process control CPU time compared to one-fork-per-
client

• Some implementations allow multiple children or threads 
to block in a call to accept, while others need some type 
of lock around accept

• Having all children or threads accept is simpler and faster 
than having main thread call accept and then pass 
descriptor to child or thread

• Using threads is normally faster than using processes



5

Client Server Design Alternatives © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Experiments Summary 2/2

2.05Pre-threaded, main thread calling accept8
1.93Pre-threaded, mutex locking to protect accept7
0.99One thread per client request6
2.58Pre-fork, parent passing descriptor to child5

1.75Pre-forking, thread mutex locking around 
accept

4
2.07Pre-forking, file locking around accept3
1.80Pre-fork, each child calling accept2

20.90Concurrent Server, one fork per client request1
0.0Iterative Server (baseline)0

Process Control CPU time
(Difference from baseline)

Server DescriptionRow


