User Datagram Protocol (UDP)

Srinidhi Varadarajan
UDP: The User Datagram Protocol

- UDP is another transport protocol in the TCP/IP suite
- UDP provides an unreliable datagram service
 - Packets may be lost or delivered out of order
 - Users exchange datagrams (not streams)
 - Connection-less
 - Not buffered -- UDP accepts data and transmits immediately (no buffering before transmission)
 - Full duplex -- concurrent transfers can take place in both directions
UDP Datagram Format

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Length</td>
<td>Checksum</td>
</tr>
</tbody>
</table>

Data
UDP Header Fields

- **UDP Destination Port**: identifies destination process
- **UDP Source Port**: optional -- identifies source process for replies, or zero
- **Message Length**: length of datagram in bytes, including header and data
- **Checksum**: optional -- 16-bit checksum over header and data, or zero
UDP Versus TCP (1)

- **Choice of UDP versus TCP** is based on:
 - Functionality
 - Performance

- **Performance**
 - TCP’s window-based flow control scheme leads to bursty bulk transfers (not rate based)
 - TCP’s “slow start” algorithm can reduce throughput
 - TCP has extra overhead per segment
 - UDP can send small, inefficient datagrams
UDP Versus TCP (2)

- **Reliability**
 - TCP provides reliable, in-order transfers
 - UDP provides unreliable service -- application must accept or deal with
 - Packet loss due to overflows and errors
 - Out-of-order datagrams

- **Multicast and broadcast**
 - Supported only by UDP
 - TCP’s error control scheme does not lend itself to reliable multicast

- **Data size**
 - UDP datagrams limited to IP MTU (64KB)
UDP Versus TCP (3)

- Application complexity
 - Application-level *framing* can be difficult using TCP because of the Nagle algorithm
 - Nagle algorithm controls when TCP segments are sent to use IP datagrams efficiently
 - But, data may be received and read by applications in different units than how it was sent
UDP versus TCP (4)

- Which is used for ...
 - HyperText Transfer Protocol (HTTP)?
 - File Transfer Protocol (FTP)?
 - Telnet?
 - Post Office Protocol (POP)?
 - Remote WHO (rwho)?
 - MBONE audio/video?
 - Real Player?
 - Network File System (NFS)?
“Middleware” Model (1)

Diagram showing layers of a network model:
- Application
- Transport
- Network
- Data Link
- Physical

There are two paths:
- Alternate API
- Network API
“Middleware” Model (2)

- Higher-level services can be provided for application development by so called “middleware”
 - May be built above the operating system (and run on various operating systems)
 - May be part of the operating system

- Possible functions: messaging, distributed object management, directory services, user-defined data types, composite data types, remote procedure calls (RPC), alternate communication abstractions
You should now be able to ...

- Distinguish between services, interfaces, and implementations related to protocols
- Identify the relationship between the TCP/IP protocol suite and the OSI Reference Model
- Identify the functions of the key protocols in the TCP/IP protocol suite
- Identify the differences between transport services provided by TCP and UDP
- Match application needs to services provided by TCP and UDP