
Server DesignServer Design

Srinidhi Varadarajan

TopicsTopics

l Types of servers
l Server algorithms

– Iterative, connection-oriented servers
– Iterative, connectionless servers
– Iterative, connectionless servers
– Concurrent, connection-oriented servers

l Server design issues
Server examples based
on BSD-compatible
socket functions and
POSIX Threads.

Server examples based
on BSD-compatible
socket functions and
POSIX Threads.

Need for Concurrency in ServersNeed for Concurrency in Servers

l A simple server
– Server creates a socket, binds address, and

makes it passive
– Server accepts a connection, services the

request, the connection is closed, and this is
repeated indefinitely

l Simple server is inadequate for most
applications since the request may take
arbitrarily long to service
– Other clients are blocked from service

Concurrent versus Iterative ServersConcurrent versus Iterative Servers

l An iterative server services one
request at a time

l A concurrent server services
multiple requests at the same time
– The actual implementation may or may

not be concurrent
– More complex than iterative servers

Three Dimensions of Server DesignThree Dimensions of Server Design

l Iterative versus concurrent
– Truly a server design issue as it is

independent of the application protocol
l Connection-oriented versus

connectionless
– Usually constrained by the application

protocol
l Stateless versus stateful

– Usually constrained by the application
protocol

Four Classes of ServersFour Classes of Servers

Connectionless
Connection-

Oriented

Concurrent

Iterative

-
+

++
-

l Concurrent, connection-oriented is
the most common server design

Iterative, ConnectionIterative, Connection--Oriented (1)Oriented (1)

1) Create a socket
– sock = socket(PF_INET, SOCK_STREAM, 0)

2) Bind to well-known address
– bind(sock, localaddr, addrlen)
– For port number, server can use

getservbyname(name, protocol)
– For host IP address, “wild card” address is

usually used: INADDR_ANY
3) Place socket in passive mode

– listen(sock, queuelen)
– Need to establish queue length (maximum is

implementation dependent)

Iterative, ConnectionIterative, Connection--Oriented (2)Oriented (2)

4) Accept a connection from a client
– new_socket = accept(sock, addr, addrlen)
– accept() blocks until there is at least one

connection request
– Based on the queue length value in listen(),

connection requests may be “accepted” by
the operating system and queued to be
accepted later by the server with the accept()
call

5) Interact with client
– recv(new_socket, …)
– send(new_socket, …)

Iterative, ConnectionIterative, Connection--Oriented (3)Oriented (3)

6) Close connection and return to accept()
call (step 4)
– close(new_socket)

close(new_sock)

recv(new_sock,…)

send(new_sock,…)

new_sock = accept(…)

other
clients
wait

Iterative, ConnectionIterative, Connection--Oriented (4)Oriented (4)

l Only one connection at a time is serviced
by an iterative, connection-oriented server
– Others wait in queue to be accepted
– Or, their connection is refused

l TCP provides reliable transport, but there
is overhead in making and breaking the
connection
– Simplifies application design
– At the expense of a performance penalty

Iterative, Connectionless Server (1)Iterative, Connectionless Server (1)

1) Create socket
– sock = socket(PF_INET, SOCK_DGRAM)

2) Interact with one or more clients
– recvfrom(sock, buf, buflen, flags, from_addr,

from_addrlen)
• Each subsequent recvfrom() can receive from a

different client
• fromaddr parameter lets server identify the client

– sendto(sock, buf, buflen, flags, to_addr,
to_addrlen)
• to_addr is usually from_addr of preceding

recvfrom()

Iterative, Connectionless Server (2)Iterative, Connectionless Server (2)

l Other clients block while one request is
processed, not for a full connection time

l UDP is not reliable, but there is no
connection overhead

recvfrom(sock,…)

sendto(sock,…)

response delay:
other clients wait

sock=socket(…)

Concurrent, Connectionless (1)Concurrent, Connectionless (1)

l Concurrency is on a per request basis for
a connectionless server

l There are two way to achieve concurrency
– Create a new process, e.g. using fork() or

exec()
– Create a new thread, using pthread_create()

l “Master” thread uses pthread_create() to
create a “slave” thread for each request

Concurrent, Connectionless (2)Concurrent, Connectionless (2)

Master
M1) Create socket

– sock = socket(PF_INET, SOCK_DGRAM)
M2) Read request

– recvfrom(sock,…)
M3) Create thread

– pthread_create()
– Thread knows:

• IP address and port of client
• Request information
• Global data and socket

Return to M2

Concurrent, Connectionless (3)Concurrent, Connectionless (3)

Slave
S1) Respond to request

– sendto(sock,…)

S2) Terminate
– pthread_exit()

Concurrent, Connectionless (4)Concurrent, Connectionless (4)

recvfrom(sock,…)

thread_create()

sock=socket(…)

MASTER

sendto(sock,…)

pthread_exit()

SLAVE

SLAVE 2

Concurrent, Connectionless (5)Concurrent, Connectionless (5)

l Requests from multiple clients (or multiple
requests from a single client) can be
serviced concurrently
– No long blocking periods

l pthread_create() does have overhead
– Thread overhead can dominate if time to

respond to request is small
– Concurrent, connectionless server is a good

design choice only if average processing time
is long relative to thread overhead

l UDP offers no reliability, has no
connection overhead

Concurrent, ConnectionConcurrent, Connection--Oriented (1)Oriented (1)

l Concurrency is on a per connection basis
for a connection-oriented server
– Depending on application, additional

concurrency may also be possible
l There are three ways to achieve

concurrency
– Create a new process -- high overhead
– Create a new thread -- lower overhead
– Use apparent concurrency within a single

thread
• Lowest overhead
• Based on select() call for asynchronous operation

Concurrent, ConnectionConcurrent, Connection--Oriented (2)Oriented (2)

Master, using thread
M1)Create socket

– sock = socket(PF_INET,
SOCK_STREAM)

M2)Bind address
– bind(sock, …)

M3)Put socket in passive mode
– listen(sock, …)

Concurrent, ConnectionConcurrent, Connection--Oriented (3)Oriented (3)

Master, using threads (continued)
M4) Accept a new connection

– new_sock = accept(sock,…)

M5) Create thread
– pthread_create()
– Thread knows:

• New socket -- new_sock
• Global data

Return to M4

Concurrent, ConnectionConcurrent, Connection--Oriented (4)Oriented (4)

Slave, using threads
S1) Interact with client

– recv(new_sock,…)
– send(new_sock,…)

S3) Close socket
– close(new_sock,…)

S2) Terminate
– pthread_exit()

Concurrent, ConnectionConcurrent, Connection--Oriented (5)Oriented (5)

–pthread_create()

new_sock=accept(…)

MASTER

close(new_sock,…)

SLAVE

SLAVE 2

pthread_exit()

recv(new_sock,…)

send(new_sock,…)

Concurrent, ConnectionConcurrent, Connection--Oriented (6)Oriented (6)

l Clients do not block while other clients are
connected
– One thread per client
– Could have additional threads per client, but

based on particular features of the application
l pthread_create() has overheads

– Thread overhead can dominate if connection
time is small

– Concurrent, connection-oriented server is a
good design choice only if average client
connection time is long relative to thread
overhead

Concurrent, ConnectionConcurrent, Connection--Oriented (7)Oriented (7)

l Except on a true multiprocessor,
“concurrency” from threads does not
generally increase throughput!
– Transactions per second do not increase
– Delay for first service and variance for service

time do decrease

Client 1 Client 2Iterative: Client 3

Concurrent: 1 2 3 1 2 3 1 2 3 1 1

Concurrent, ConnectionConcurrent, Connection--Oriented (8)Oriented (8)

lMay be able to increase throughput
for some applications, e.g. by
overlapping disk I/O with processing
in the CPU

l TCP provides reliability at the
expense of connect/disconnect
overhead

Apparent Concurrency (1)Apparent Concurrency (1)

0) Maintain a set of socket descriptors
(SOCKETS) using the fd_set structure

– Initialize SOCKETS = { } (empty)
1) Create socket

– sock = socket(PF_INET, SOCK_STREAM)
– SOCKETS = { sock }

2) Bind address
– bind(sock, …)

3) Put socket in passive mode
– listen(sock, …)

Apparent Concurrency (2)Apparent Concurrency (2)

4) Use select() to determine sockets that
have activity (are ready for “service”)
– ret = select(maxfd, rdfds, wrfds, exfds, time)

5a) If select() indicates main socket (sock) is
ready, accept a new connection
– new_sock = accept(sock,…)
– SOCKETS = SOCKETS ∪ { new_sock }

5b) If select() indicates another socket
(ready) is ready
– recv(ready,…) to read request, and then
– send(read,…) to send response

Return to step 4

Apparent Concurrency (3)Apparent Concurrency (3)

select()

accept()

or

recv()

send()

response delay:
other clients wait

l While another connection is accepted or
while one request from another client is
serviced

l Clients do not wait full connection time

Apparent Concurrency (4)Apparent Concurrency (4)

l Data can be conveniently (or
dangerously) shared between
different clients
– Not easy with multiple threads

Server Design Factors (1)Server Design Factors (1)

l Time per request
– If high, a multithreaded design is best
– If low, thread overhead may dominate

performance and an iterative server or a server
using apparent concurrency is best

l Time per connection (connection-oriented)
– If high, a concurrent (threaded or apparent)

server is best
– If low, an iterative server is best

l Number of active clients
– If high, concurrent server is best
– If low, iterative server is best

Server Design Factors (2)Server Design Factors (2)

l Overhead for thread creation
– Trade-offs for connection time and request

response time are relative to thread creation
time

– Operating systems with low overhead thread
creation increase opportunities to use
multithreaded design

l Need to share information between clients
– Easier in an iterative server or a server with

apparent concurrency
– More complex in a multithreaded server

Server Design Factors (3)Server Design Factors (3)

l LAN- versus WAN-based application
– TCP’s reliability is more important in a

WAN where packet loss and out-of-
order delivery is more likely

– LAN-based applications may be able to
provide reliability with less “expense”
using UDP than TCP

l Inherent reliability in the application
– May eliminate the need to use TCP

Simple DeadlockSimple Deadlock

l Deadlock occurs when
– Client is blocked waiting on server
– Server is blocked waiting on client

l Simple example of server deadlock

recv()

SERVER CLIENT

never_never_land()

accept() connect()

Server is blocked
waiting for data from

the client L

More Subtle Deadlock (1)More Subtle Deadlock (1)
l Deadlock may be much more subtle

SERVER CLIENT

recv() send(BIG_BUFFER)

accept() connect()

send() Client blocks at
send() since
server is not
receiving L

Server eventually
blocks at send()

since client
never receives L

X

send()

More Subtle Deadlock (2)More Subtle Deadlock (2)

recv()

SERVER CLIENT

receive buffer

receive buffer

send()
blocked

server deadlock

client deadlock

Terminating a Connection (1)Terminating a Connection (1)

l The application protocol determines when
a connection should be closed

l Client may know when transaction is done
– Examples:

• FTP
• HTTP 1.1 (persistent connections)

– A “misbehaving” client can keep connections
open, consuming server resources

– Solutions
• Time-out for the session (connect, idle, etc.)
• Trusted clients

Terminating a Connection (2)Terminating a Connection (2)

l Even if the server controls connection
termination, there may still be problems
– Operating system maintains connection

information for 2×MSL (maximum segment life)
• Allows OS to reject delayed, duplicate packets
• Uses OS resources

– Client can make lots of requests and consume
resources faster than the server can free them

l Vulnerability to denial of service attacks

Example: Threaded ECHO Server (1)Example: Threaded ECHO Server (1)

l Multiple-threaded concurrent,
connection-oriented design

Socket for
connect

Sockets for individual
connections

master

slave slave slave

SERVER

Example: Concurrent ECHO Server (2)Example: Concurrent ECHO Server (2)

l Operation of concurrent ECHO server
– pthread_create() called for each new

connection
– TCPechod() invoked for each thread

• recv() and send() repeated until client closes the
connection

• Note that TCPechod() does not call exit() to exit the
process if there’s an error -- just the thread
terminates I.e. the thread calls pthread_exit.

• Calling exit will terminate all threads and the
process, a bad idea in this case

Example: Example: AsynchAsynch ECHO Server (1)ECHO Server (1)
l Single-thread concurrent,

connection-oriented

Socket for
connect

SERVER

Sockets for individual
connections

Example:Example: AsynchAsynch ECHO Server (2)ECHO Server (2)
l Uses select() call

– select() indicates which sockets are ready for
service

• Input or connection for ECHO server

– fd_set structures record the sets of sockets

typedef struct fd_set {
u_int fd_count;
SOCKET fd_array[FD_SETSIZE];

}

Example:Example: AsynchAsynch ECHO Server (3)ECHO Server (3)
l fd_set structures manipulated with

macros
– FD_CLR(fd, set): remove fd from set
– FD_SET(fd, set): add fd to set
– FD_ZERO(set): empty set
– FD_ISSET(fd, set): test if fd is in set

FD_ZERO(&afds); // empty afds
FD_SET(msock, &afds); // add msock

Example:Example: AsynchAsynch ECHO Server (4)ECHO Server (4)

l select()
– Checks all sockets in sets

• set for input and connection request
• set for output
• set for exceptions

– Blocks until at least one of the sockets is
ready or time-out

– Returns with the set changed to contain just
the sockets ready for service

select(FD_SETSIZE, &rfds,
(fd_set *)0, (fd_set *)0,
(struct timeval *)0)

Example:Example: AsynchAsynch ECHO Server (5)ECHO Server (5)

l Operation
– Steps through all active sockets and checks to

see if socket is ready
– Accepts a new connection and adds to set if

master server socket (msock) is ready
– Calls echo() to echo new data if client

connection socket is ready

l There may be several sockets ready for
service

You should now be able to …You should now be able to …

l Identify the three dimensions of server
design

l Identify factors and application
requirements that affect design choice

l Select server design based on factors
application requirements

l Design, implement, and test servers based
on the four classes

l Recognize causes of deadlock

