CS 4124

More on the Lupanov Representation

September 16, 2005

1 Development of Lupanov Representation

Here we explain the development of the Lupanov representation for a Boolean function $f: \mathcal{B}^n \to \mathcal{B}$ using the example of Figure 2.22, where n = 6 and k = 3. The example is a Boolean function $f: \mathcal{B}^6 \to \mathcal{B}$. Since k = 3 and n - k = 3, we think of f as a function

$$f:\mathcal{B}^3\times\mathcal{B}^3\to\mathcal{B}.$$

We use the notation **a** for an element of \mathcal{B}^k and **b** for an element of \mathcal{B}^{n-k} , so we can write $f(\mathbf{a}, \mathbf{b})$ for an evaluation of f. We take the elements of \mathcal{B}^k to index the rows of a truth table and the elements of \mathcal{B}^{n-k} to index its columns. Figure 1 contains the same truth table as in Figure 2.22.

				\mathbf{b}_1	\mathbf{b}_2	\mathbf{b}_3	\mathbf{b}_4	\mathbf{b}_5	\mathbf{b}_6	\mathbf{b}_7	\mathbf{b}_8	
				0	1	0	1	0	1	0	1	x_4
				0	0	1	1	0	0	1	1	x_5
\mathbf{a}_{ij}	x_1	x_2	x_3	0	0	0	0	1	1	1	1	x_6
$\overline{\mathbf{a}_{1,1}}$	0	0	0	0	1	0	0	0	1	0	0	
$\mathbf{a}_{1,2}$	0	0	1	0	1	1	0	0	1	1	1	A_1
$\mathbf{a}_{1,3}$	0	1	0	1	0	0	1	0	0	0	1	
$\mathbf{a}_{2,1}$	0	1	1	1	0	1	1	0	0	1	0	
$\mathbf{a}_{2,2}$	1	0	0	0	0	0	0	1	0	0	1	A_2
$\mathbf{a}_{2,3}$	1	0	1	1	1	0	1	1	0	0	0	
${\bf a}_{3,1}$	1	1	0	1	0	1	1	0	1	1	0	
$\mathbf{a}_{3,2}$	1	1	1	0	1	0	0	0	0	1	0	A_3
$\mathbf{a}_{3,3}$	1	1	1	0	1	0	0	0	0	1	0	

Figure 1: Truth table for (3, 3)-Lupanov representation.

As in the textbook, the row vectors (from \mathcal{B}^k) are partitioned into p=3 sets A_1 , A_2 , and A_3 . Each set has s=3 row vectors, except for A_3 , which contains only s'=2 row vectors. For ease of exposition, an extra, duplicate, row has been added to A_3 , so that it too has s rows.

We index the s row vectors in A_i to be \mathbf{a}_{ij} , where $1 \leq j \leq s$. In our example, we have these vectors in A_i : $\mathbf{a}_{i,1}$, $\mathbf{a}_{i,2}$, and $\mathbf{a}_{i,3}$. Similarly, we label the 2^{n-k} column vectors \mathbf{b}_t , where $1 \leq t \leq 2^{n-k}$. In our example, we label the columns $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_8$.

Fix i and hence A_i . Define

$$g_i: \mathcal{B}^{n-k} \to \mathcal{B}^s$$

to be

$$g_i(\mathbf{b}) = (f(\mathbf{a}_{i,1}, \mathbf{b}), f(\mathbf{a}_{i,2}, \mathbf{b}), \dots, f(\mathbf{a}_{i,s}, \mathbf{b})),$$

\mathbf{b}_t	x_4	x_5	x_6	$g_1(\mathbf{b}_t)$			$g_2(\mathbf{b}_t)$			$g_3(\mathbf{b}_t)$		
$\overline{\mathbf{b}_1}$	0	0	0	0	0	1	1	0	1	1	0	0
\mathbf{b}_2	1	0	0	1	1	0	0	0	1	0	1	1
\mathbf{b}_3	0	1	0	0	1	0	1	0	0	1	0	0
\mathbf{b}_4	1	1	0	0	0	1	1	0	1	1	0	0
\mathbf{b}_5	0	0	1	0	0	0	0	1	1	0	0	0
\mathbf{b}_6	1	1	0	1	1	0	0	0	0	1	0	0
\mathbf{b}_7	0	1	1	0	1	0	1	0	0	1	1	1
\mathbf{b}_8	1	1	1	0	1	1	0	1	0	0	0	0

Figure 2: Table of g_i values.

which is the s-vector of values in the column for **b** and the rows for A_i . Figure 2 gives all the g_i values for our example.

Now, for $1 \le i \le p$, define the column function

$$c_i: \mathcal{B}^s \times \mathcal{B}^{n-k} \to \mathcal{B}$$

to be

$$c_i(\mathbf{v}, \mathbf{b}) = \begin{cases} 1 & \text{if } g_i(\mathbf{b}) = \mathbf{v}; \\ 0 & \text{otherwise.} \end{cases}$$

Finally, for $1 \leq i \leq p$, define the row function

$$r_i:\mathcal{B}^s imes\mathcal{B}^k o\mathcal{B}$$

to be

$$r_i(\mathbf{v}, \mathbf{a}) = \begin{cases} 1 & \text{if } \mathbf{a} = \mathbf{a}_{ij} \text{ and } \pi_j(\mathbf{v}) = 1; \\ 0 & \text{otherwise.} \end{cases}$$

Now observe that, if $\mathbf{a} \in A_i$, $\mathbf{b} \in \mathcal{B}^{n-k}$ and $f(\mathbf{a}, \mathbf{b}) = 1$, then there exists $\mathbf{v} \in \mathcal{B}^s$ such that

$$r_i(\mathbf{v}, \mathbf{a}) \wedge c_i(\mathbf{v}, \mathbf{b}) = 1$$

= $f(\mathbf{a}, \mathbf{b})$.

Hence, we get the (k, s)-Lupanov representation of f:

$$f(\mathbf{a}, \mathbf{b}) = \bigvee_{i=1}^{p} \bigvee_{\mathbf{v} \in \mathcal{B}^{s}} (r_{i}(\mathbf{v}, \mathbf{a}) \wedge c_{i}(\mathbf{v}, \mathbf{b})).$$

For our example,

$$\begin{array}{ll} f(\mathbf{a},\mathbf{b}) & = & \vee_{i=1}^{3} \vee_{\mathbf{v} \in \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}} \; (r_{i}(\mathbf{v},\mathbf{a}) \wedge c_{i}(\mathbf{v},\mathbf{b})) \\ & = & (r_{1}((0,0,0),\mathbf{a}) \wedge c_{1}((0,0,0),\mathbf{b}) \vee r_{1}((0,0,1),\mathbf{a}) \wedge c_{1}((0,0,1),\mathbf{b}) \vee \\ & r_{1}((0,1,0),\mathbf{a}) \wedge c_{1}((0,1,0),\mathbf{b}) \vee r_{1}((0,1,1),\mathbf{a}) \wedge c_{1}((0,1,1),\mathbf{b}) \vee \\ & r_{1}((1,0,0),\mathbf{a}) \wedge c_{1}((1,0,0),\mathbf{b}) \vee r_{1}((1,0,1),\mathbf{a}) \wedge c_{1}((1,0,1),\mathbf{b}) \vee \\ & r_{1}((1,1,0),\mathbf{a}) \wedge c_{1}((1,1,0),\mathbf{b}) \vee r_{1}((1,1,1),\mathbf{a}) \wedge c_{1}((1,1,1),\mathbf{b})) \vee \\ & (r_{2}((0,0,0),\mathbf{a}) \wedge c_{2}((0,0,0),\mathbf{b}) \vee r_{2}((0,0,1),\mathbf{a}) \wedge c_{2}((0,0,1),\mathbf{b}) \vee \\ & r_{2}((0,1,0),\mathbf{a}) \wedge c_{2}((1,0,0),\mathbf{b}) \vee r_{2}((0,1,1),\mathbf{a}) \wedge c_{2}((0,1,1),\mathbf{b}) \vee \\ & r_{2}((1,0,0),\mathbf{a}) \wedge c_{2}((1,0,0),\mathbf{b}) \vee r_{2}((1,0,1),\mathbf{a}) \wedge c_{2}((1,0,1),\mathbf{b}) \vee \\ & r_{2}((1,1,0),\mathbf{a}) \wedge c_{2}((1,1,0),\mathbf{b}) \vee r_{2}((1,1,1),\mathbf{a}) \wedge c_{2}((1,1,1),\mathbf{b})) \vee \\ & (r_{3}((0,0,0),\mathbf{a}) \wedge c_{3}((0,0,0),\mathbf{b}) \vee r_{3}((0,0,1),\mathbf{a}) \wedge c_{3}((0,0,1),\mathbf{b}) \vee \\ & r_{3}((1,0,0),\mathbf{a}) \wedge c_{3}((1,0,0),\mathbf{b}) \vee r_{3}((1,0,1),\mathbf{a}) \wedge c_{3}((1,1,1),\mathbf{b}) \vee \\ & r_{3}((1,1,0),\mathbf{a}) \wedge c_{3}((1,1,0),\mathbf{b}) \vee r_{3}((1,1,1),\mathbf{a}) \wedge c_{3}((1,1,1),\mathbf{b}) \vee \\ & r_{3}((1,1,0),\mathbf{a}) \wedge c_{3}((1,1,0),\mathbf{b}) \vee r_{3}((1,1,1),\mathbf{a}) \wedge c_{3}((1,1,1),\mathbf{b}) \end{pmatrix} \end{array}$$

2 A Circuit for the Lupanov Representation

A circuit for the Lupanov representation of f is built by decoding \mathbf{a} and \mathbf{b} ; computing $r_i(\mathbf{v}, \mathbf{a})$ and $c_i(\mathbf{v}, \mathbf{b})$ for fixed i and \mathbf{v} ; and combining the results with AND and OR gates.

2.1 Decoders for a and b

Apply Lemma 2.5.4 to obtain a decoder circuit for $\mathbf{a} \in \mathcal{B}^k$ with complexity

$$C_{\Omega_0} \left(f_{\text{decode}}^{(k)} \right) \leq 2^k + (2k - 2)2^{k/2}$$

$$\leq 2^k + k2^{1+k/2}$$

$$D_{\Omega_0} \left(f_{\text{decode}}^{(k)} \right) \leq \lceil \log_2 k \rceil + 1$$

$$\leq 2 + \log_2 k$$

and a decoder circuit for $\mathbf{b} \in \mathcal{B}^{n-k}$ with complexity

$$C_{\Omega_0} \left(f_{\text{decode}}^{(n-k)} \right) \leq 2^{n-k} + (2(n-k)-2)2^{(n-k)/2}$$

$$\leq 2^{n-k} + n2^{1+((n-k)/2)}$$

$$D_{\Omega_0} \left(f_{\text{decode}}^{(n-k)} \right) \leq \lceil \log_2 n - k \rceil + 1$$

$$\leq 2 + \log_2 n.$$

2.2 Circuit to compute the $r_i(\mathbf{v}, \mathbf{a})$ functions

There are p row functions r_i . Fix i, where $1 \le i \le p$, and $\mathbf{v} \in \mathcal{B}^s$. If $\mathbf{a} \notin A_i$, then $r_i(\mathbf{v}, \mathbf{a}) = 0$. Hence, $r_i(\mathbf{v}, \mathbf{a}) = 1$ for at most s values of \mathbf{a} , so $r_i(\mathbf{v}, \mathbf{a})$ is the OR of at most s of the outputs

from the **a** decoder. This requires $\leq s$ additional gates and additional depth $\leq \lceil \log_2 s \rceil + 1 \leq 2 + \log_2 s$. Computing all of the $r_i(\mathbf{v}, \mathbf{a})$ functions requires $\leq p2^s s$ additional gates, and additional depth $\leq 2 + \log_2 s$, since the functions can all be computed in parallel.

2.3 Circuit to compute the $c_i(\mathbf{v}, \mathbf{b})$ functions

There are p column functions c_i . Fix i, where $1 \le i \le p$, and $\mathbf{v} \in \mathcal{B}^s$. We have that $c_i(\mathbf{v}, \mathbf{b}) = 1$ exactly when $g_i(\mathbf{b}) = \mathbf{v}$. Hence, every $\mathbf{b} \in \mathcal{B}^{n-k}$ contributes a single 1 to the output of each of the c_i functions. Define $d_{i\mathbf{v}} : \mathcal{B}^s \to \mathcal{B}$ to be

$$d_{i\mathbf{v}} = c_i(\mathbf{v}, \mathbf{b}).$$

Taking the outputs of the **b** decoder, we can compute all of the $d_{i\mathbf{v}}$ functions, for fixed i and all $\mathbf{v} \in \mathcal{B}^s$, with $\leq 2^{n-k}$ additional OR gates and additional depth $\leq \lceil \log_2(n-k) \rceil + 1 \leq 2 + \log_2 n$. To compute all of the $d_{i\mathbf{v}}(\mathbf{b})$ functions requires $\leq p2^{n-k}$ additional gates, and additional depth $\leq 2 + \log_2 n$, since the functions can all be computed in parallel. Observe also that the computation of the r_i and the c_i occur in parallel.

2.4 Circuit to compute the Lupanov formula

Once the $r_i(\mathbf{v}, \mathbf{a})$ and $c_i(\mathbf{v}, \mathbf{a})$ values are computed, the Lupanov representation of f requires $\leq p2^s$ additional AND gates, all in parallel with additional depth 1; and $\leq p2^s$ additional or gates with additional depth $\leq \lceil \log_2 p2^s \rceil + 1 \leq 2 + s + \log_2 p$. Combining the sizes, we need $\leq p2^{s+1}$ additional gates. Combining the depths, we need $\leq 3 + s + \log_2 p$ additional circuit depth.

2.5 Circuit complexity

The size of the constructed circuit is at most

$$\psi(n,k,p,s) = (2^k + k2^{1+k/2}) + (2^{n-k} + n2^{1+(n-k)/2}) + p2^s s + p2^{n-k} + p2^{s+1}.$$

The depth of the constructed circuit is at most

$$\begin{split} \delta(n,k,p,s) &= \max\{(2+\log_2 k) + (2+\log_2 s), (2+\log_2 n) + (2+\log_2 n)\} + 3 + s + \log_2 p \\ &= 4 + 2\log_2 n + 3 + s + \log_2 p \\ &= 7 + s + 2\log_2 n + \log_2 p. \end{split}$$

3 Upper Bounds on Circuit Complexity

As in the textbook, choose these values for k, p, and s:

$$k = \lceil 3 \log_2 n \rceil$$

$$p = \left\lceil \frac{2^k}{\lceil n - 5 \log_2 n \rceil} \right\rceil$$

$$s = \lceil n - 5 \log_2 n \rceil.$$

Here are some relationships that hold for all sufficiently large n:

$$k \leq 1 + 3 \log_2 n$$
 $2^k \leq 2n^3$
 $2^k \geq n^3$
 $s \leq 1 + (n - 5 \log_2 n)$
 $2^s \leq \frac{2^{n+1}}{n^5}$
 $p \leq \frac{2n^3}{1 + n - 5 \log_2 n}$
 $ps \leq 2^{k+1}$
 $\leq 4n^3$
 $\log_2 p \leq 1 + 2 \log_2 n$.

For the size complexity of the constructed circuit, we obtain

$$\begin{array}{lll} \psi(n,k,p,s) & = & (2^k + k2^{1+k/2}) + (2^{n-k} + n2^{1+(n-k)/2}) + p2^s s + p2^{n-k} + p2^{s+1} \\ & \leq & \left(2n^3 + 2(1 + 3\log_2 n)n^{3/2}\right) + \left(\frac{2^n}{n^3} + \frac{n2^{1+n/2}}{n^{3/2}}\right) \\ & & + \frac{4n^32^{n+1}}{n^5} + \frac{2n^32^n}{n^3(1+n-5\log_2 n)} + \frac{2n^32^{n+2}}{n^5(1+n-5\log_2 n)} \\ & \leq & O(n^3) + O(n^{3/2}\log_2 n) + \frac{2^n}{n^3} + O\left(\frac{2^{n/2}}{n^{1/2}}\right) \\ & & + O\left(\frac{2^n}{n^2}\right) + \frac{2^{n+1}}{1+n-5\log_2 n} + \frac{2^{n+3}}{n^2(1+n-5\log_2 n)} \\ & \leq & \frac{2^{n+1}}{1+n-5\log_2 n} + O\left(\frac{2^n}{n^2}\right), \end{array}$$

where, as usual, O(f(n)) indicates a function of n that grows no faster than f(n) as $n \to \infty$ (see Section 1.2.8).

For the depth complexity of the constructed circuit, we obtain

$$\begin{array}{lcl} \delta(n,k,p,s) & = & 7+s+2\log_2 n + \log_2 p \\ & \leq & 7+(1+n-5\log_2 n) + 2\log_2 n + (1+2\log_2 n) \\ & = & n+9-\log_2 n \\ & \leq & n+O(\log_2 n). \end{array}$$