Syllabus: CS 4104 Data and Algorithm Analysis Spring, 2015

1 General Course Information

CRN	19506	
MEETING TIME	2:00 PM-3:15 PM; Tuesdays and Thursdays	
CLASSROOM	330 Lavery Hall	
FINAL EXAM	Wednesday, May 13, 1:05–3:05	

Instructor: Lenwood S. Heath

• Office: 2160J Torgersen Hall

• Office Hours: 9:00–11:00, Tuesdays and Thursdays

• Email: heath@vt.edu

Teaching Assistants:

	Sorour Ekhtiari	RATHNA SENTHIL
EMAIL	esorour@vt.edu	srathna@vt.edu
Office Hours	See Web site	See Web site
Room	See Web site	See Web site

Web Site: http://courses.cs.vt.edu/cs4104/heath/Spring2015/index.php

Scholar: https://scholar.vt.edu/

Piazza: https://piazza.com/vt/spring2015/cs4104

Prerequisites:

• CS 3114, Data Structures and Algorithms, minimum grade C

• MATH 3134, Applied Combinatorics and Graph Theory, or MATH 3034, Introduction to Proofs

Required Textbook: Introduction to Algorithms (Third Edition). Cormen, Leiserson, Rivest, and Stein. MIT Press, 2009. ISBN: 978-0-262-03384-8.

2 Course Description

This course emphasizes techniques for constructing efficient algorithms and techniques for analyzing the efficiency of an algorithm. The notion of a *problem* is defined. Problems in a number of application areas are covered. Lower bounds on the efficiency of solving a problem are also addressed, especially the notion of NP-completeness.

3 Grading Policy

Grading for the course is on a 1000-point scale, with the points distributed as follows:

Homework assignments: 10 at about 60 points each	600
Midterm exam: March 5, 2015	150
Final exam: Wednesday, May 13, 1:05–3:05	250

A typical homework assignment consists of 2 to 4 problems, posted on the course web site approximately one week before the due date.

All homework must be prepared with L^AT_EX¹ or other word processing system and submitted as a PDF to Scholar by 5:00 PM on the due date². **No late homework will be accepted.**

4 Readings

For most classes, there is a reading assignment (see Section 7) to be completed by class time. Each assignment consists of sections in the textbook.

5 Ethics

The Honor Code applies. All work submitted must be the student's own work. Students may solicit help only from the instructor or the teaching assistants.

6 Announcement

If any student needs special accommodations because of a disability, please contact the instructor during the first week of classes.

¹See LaTeX resources on the course web site.

²See Calendar on the course web site.

7 Course Schedule

DATES	Reading Assignment	Topics			
	J	ANUARY			
1/20-1/23	Chapters 1 and 2	Problems, complexity, analysis			
1/26-1/30	Chapter 3; Section 15.1	Asymptotics; dynamic programming			
	FEBRUARY				
2/2-2/6	Sections 15.2–15.4	Dynamic programming			
2/9-2/13	Sections 16.1–16.3	Greedy algorithms			
2/16-2/20	Section 22.1–22.4	Depth-first search; topological sort			
2/23-2/27	Section 23.1–23.2	Substitution arguments; minimum spanning trees			
March					
3/2-3/6	Sections 24.1–24.3	Single-source shortest paths; relaxation; Bellman-Ford; Dijkstra			
3/5	Midterm Exam	Topics through minimum spanning trees			
3/9-3/13	Spring Break				
3/16-3/20	Sections 25.1–25.2	All-pairs shortest paths; Floyd-Warshall; transitive closure			
3/23-3/27	Sections 34.1–34.2	Polynomial time; optimization and decision problems; encoding problems			
3/30-4/3	Sections 34.2–34.3	Polynomial-time reductions and NP-completeness			
APRIL					
4/6-4/10	Sections 34.4–34.5	Proving problems NP-complete			
4/13-4/17	Sections 32.1–32.3	String matching			
4/20-4/24	Sections 35.1–35.3	Approximation algorithms			
4/27-5/1	Sections 26.1–26.3	Maximum flow; maximum bipartite matching			
May					
5/5	Last Day of Class	Review for final; questions on homework solutions and course material			
5/13	Final Exam	1:05–3:05: Comprehensive final exam			