CS 3824

 Homework Assignment 4

 Homework Assignment 4}

Given: October 8, 2015
Due: October 24, 2015

General directions. The point value of each problem is shown in []. Each solution must include all details and an explanation of why the given solution is correct. In particular, write complete sentences. A correct answer without an explanation is worth no credit. The completed assignment must be turned in as a PDF through Scholar by 5:00 PM on October 24,2015 . No late homework will be accepted.

Digital preparation of your solutions is mandatory. Use of $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ is optional, but encouraged. No matter how you prepare your homework, please include your name.

Use of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ (optional, but encouraged).

- Retrieve this $\mathrm{HA}_{\mathrm{E}} \mathrm{X}$ source file, named homework4.tex, from the course web site.
- Rename the file <Your VT PID>_solvehw4.tex, For example, for the instructor, the file name would be heath_solvehw4.tex.
- Use a text editor (such as vi, emacs, or pico) to accomplish the next three steps.
- Uncomment the line
$\%$ \setboolean\{solutions\}\{True\}
in the document preamble by deleting the \%.
- Find the line
\{Lenwood S. Heath\}
and replace the instructor's name with your name.
- Enter your solutions where you find the $\mathrm{I}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ comments
\% PUT YOUR SOLUTION HERE
- Convert your solutions to PDF and submit your solutions through Scholar by 5:00 PM on October 24, 2015.

[50] 1. Knuth-Morris-Pratt.

Let

$$
P=C G A T T C G A T T C G A T A C G
$$

be a pattern string, and let

$$
T=T A C G A T T C G A T T C G A T A C G A T T A C G A T T C G A T T C G A T A C G A C G
$$

be a text string. Here, $m=17$ and $n=43$.
A. Use the Compute-Prefix-Function algorithm discussed in class to compute the prefix function π for all positions in P
B. Use the KMP-Matcher algorithm discussed in class to compute all occurrences of P in T.

Be certain to explain your work.
[50] 2. Jones and Pevzner problem 9.8.
A repeat in a string $S=S[1 . . n]$ is a substring α of S that occurs at at least two different positions in S. The occurrences may overlap, but they do not have to. Give an example of a string whose longest (exact) repeat has length 5.

Give pseudocode for the resulting algorithm to find a longest (exact) repeat in S. You may use the construction of a suffix tree for a string of your choosing as a known subroutine. Argue that your algorithm has linear worst-case time complexity.

