CS 3824
 Homework Assignment 1

Given: August 20, 2015
Due: September 12, 2015

General directions. The point value of each problem is shown in []. Each solution must include all details and an explanation of why the given solution is correct. In particular, write complete sentences. A correct answer without an explanation is worth no credit. The completed assignment must be turned in as a PDF through Scholar by 5:00 PM on September 12, 2015. No late homework will be accepted.

Digital preparation of your solutions is mandatory. Use of $\mathrm{IATEX}_{\mathrm{E}}$ is optional, but encouraged. No matter how you prepare your homework, please include your name.

Use of $\mathrm{AT}_{\mathbf{E}} \mathrm{X}$ (optional, but encouraged).

- Retrieve this IATEX source file, named homework1.tex, from the course web site.
- Rename the file < Your VT PID>_solvehw1.tex, For example, for the instructor, the file name would be heath_solvehw1.tex.
- Use a text editor (such as vi, emacs, or pico) to accomplish the next three steps.
- Uncomment the line
\% \setboolean\{solutions\}\{True\}
in the document preamble by deleting the $\%$.
- Find the line
\{Lenwood S. Heath\}
and replace the instructor's name with your name.
- Enter your solutions where you find the LATEX comments
\% PUT YOUR SOLUTION HERE
- Convert your solutions to PDF and submit your solutions through Scholar by 5:00 PM on September 12, 2015.

[50] 1. Jones and Pevzner problem 4.4.

Note that the problem is to generate m-element multisets that are subsets of a multiset S having n elements. To be concrete, you may assume that a multiset is represented as an (unordered) list of integers. Give your algorithm in pseudocode. Then, implement the algorithm in a programming language of your choice. Test your implementation on input

$$
\begin{aligned}
m & =3 \\
S & =\{4,9,16,1,4,7\} .
\end{aligned}
$$

Include the source of your implementation in your solution document. Also, include the solution you get for the test input.

A O bound on the worst-case time complexity of your algorithm is a function of n and m. This is difficult to determine, so you are not required to do so. However, feel free to give it a try.

[25] 2. Jones and Pevzner problem 4.12.

Give pseudocode for your algorithm, along with an English explanation of how it works. Determine a O bound on its worst-case time complexity as a function of the lengths of T and s. (Use $|T|$ and $|s|$ for these lengths.)

[25] 3. Jones and Pevzner problem 4.13.

Give pseudocode for your algorithm, along with an English explanation of how it works. Determine a O bound on its worst-case time complexity as a function of the lengths of T and s and of k.

