Information Hiding

« Do not expose internal information of a
module unless necessary

— E.g., private fields, getter & setter
methods

Abstraction & Refinement

 Abstraction
— To manage the complexity of software,
— To anticipate detail variations and future
changes
* Refinement

— A top-down design strategy to reveal low-level
details from high-level abstraction as design
progresses

10/17/19



Abstraction to Reduce Complexity

* We abstract complexity at different
levels

— At the highest level, a solution is stated in
broad terms, such as "process sale”

— At any lower level, a more detailed
description of the solution is provided, such

as the internal algorithm of the function
and data structure

10

Abstraction to Anticipate Changes

* Define interfaces fo leave
implementation details undecided

* Polymorphism

«interface>>
ITaxCalculator
getTaxes(...)

Lo

TaxMaster TaxBonanza TurboTax

N. Meng, B. Ryder 11

11

10/17/19



Refinement

* The process to reveal lower-level
details

— High-level architecture software design

— Low-level software design
* Classes & objects
* Algorithms
* Data

12

Refactoring

"..the process of changing a software
system in such a way that it does not
alter the external behavior of the code
[design] yet improves its internal
structure” --Martin Fowler

e Goal: to make software easier to
integrate, test, and maintain.

13

10/17/19



10/17/19

S.0.L.I.D Principles of OOD

Robert Martin
S - Single-responsibility principle
O - Open-closed principle
L - Liskov substitution principle
I - Interface segregation principle
D - Dependency Inversion Principle

N. Meng, B. Ryder 14

14

A Running Example

class Circle {
public float radius;

public Circle(float radius) {
this.radius = radius;
}
}

class Square {
public float length;

public Square(float length) {
this.length = length;
}

N. Meng, B. Ryder 15

15



Single-responsibility principle

Robert Martin

* A class should have only one job.
— Modularity, high cohesion, low coupling
 Sum up the areas for a list of shapes?

class AreaCalculator {
protected List<Object> shapes;
public AreaCalculator (List<Object> shapes) {
this.shapes = shapes;
}
public float sumArea() {
// logic to sum up area of each shape

}
}

16

O - Open-closed principle

 Objects or entities should be open for
extension, but closed for modification.

« Add a new kind of shape, such as Triangle?

interface Shape {
public float area();
}

class Triangle implements Shape { .. }

class AreaCalculator {
protected List<Shape> shapes;
public float sumArea() {

float sum = 0;
for (Shape s : shapes) { sum += s.area(); }

17

10/17/19



L - Liskov substitution principle

* Let q(x) be a property provable about

objects of x of type T. Then q(y) should
be provable for objects y of type S
where S is a subtype of T.

Every subclass/derived class should be
substitutable for their base/parent
class.

class Triangle implements Shape { X

public float area () { return -1;}

}

N. Meng, B. Ryder 18

18

I - Interface segregation principle

A client should never be forced to
implement an interface that it doesn't
use or clients shouldn't be forced to
depend on methods they do not use.

* Interface design

interface Shape{ X
public int numEdges();

}

N. Meng, B. Ryder 19

19

10/17/19



D - Dependency Inversion principle

Entities must depend
on abstractions not
onh concretions. It
states that the high
level module must

class AreaCalculator{
protected float radius;
protected float length;
public AreaCalculator(..,
float param) {

if (..//is a square)
this.length = param
else // is a circle

HOT depend on The } this.radius = param;
low level module, but X
they should depend

on abstractions.

N. Meng, B. Ryder 20

20

Software Design Practices Include:

« Two stages
— High-level: Architecture design
« Define major components and their relationship
— Low-level: Detailed design

* Decide classes, interfaces, and implementation
algorithms for each component

N. Meng, B. Ryder 21

21

10/17/19



How to Do Software Design?

* Reuse or modify existing design models
— High-level: Architectural styles
— Low-level: Design patterns, Refactorings
« Tterative and evolutionary design
— Package diagram
— Detailed class diagram
— Detailed sequence diagram

22

10/17/19



