
12/2/19

1

Testing Approaches

1

Overview

• What is a “Good” test?
• How to design tests?
–White-box testing
– Black-box testing

N. Meng, B. Ryder 2

2

12/2/19

2

What Is a “Good” Test?

• A good test
– has a high probability of finding an error
• Developers must understand the software

– is not redundant
• Every test should have a different purpose

– should be “best of breed”
• Prioritize tests that have the highest likelihood of

uncovering errors
– should be neither too simple nor too complex
• Don’t try to combine different tests together

N. Meng, B. Ryder 3

3

Internal and External Views

• Any engineered product can be tested in
two ways:
– Knowing the internal working of a product,

test whether “all gears mesh” and every
component has been adequately exercised

– Knowing the specification, test whether the
product conforms to specification

N. Meng, B. Ryder 4

4

12/2/19

3

Software Testing Methods

• White-box methods
– Internal-view approach

• Black-box methods
– External-view approach

N. Meng, B. Ryder 5

5

White-Box Testing

N. Meng, B. Ryder 6

... our goal is to ensure that all statements and
conditions have been executed at least once …

6

12/2/19

4

Why Cover?

• Logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

• We often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

N. Meng, B. Ryder 7

7

Control Flow Graph

• A representation, using
graph notation, of all
paths that might be
traversed through a
program during its
execution
– Node: statement or block
– Edge: control flow

N. Meng, B. Ryder 8

i=input()

if(i<0)

j=i*i j=2*i+1

j=j*j

while(j != 1)

8

12/2/19

5

Data Flow Graph

• A representation of the “flow” of data
through a system

N. Meng, B. Ryder 9

i=input()

if(i<0) j=i*i j=2*i+1

j=j*j

while(j != 1)

9

Naïve Approach: Exhaustive Testing

• Enumerate all possible execution paths

N. Meng, B. Ryder 10

1

10

76 98
iteration == ?

2
3

4 5

10

12/2/19

6

How Many Paths When iteration == 1?

• 5 paths
– 1,2,3,4,6
– 1,2,3,4,7
– 1,2,3,5,8
– 1,2,3,5,9
– 1,2,10

N. Meng, B. Ryder 11

11

How Many Paths When iteration == 20?

• 520 ≈ 1014

• If we execute one test per
millisecond, it would take 3,170 years
to test this program!!

N. Meng, B. Ryder 12

12

12/2/19

7

Efficient Approach: Selective Testing

• Control flow-based testing
– Basis path testing
– Condition testing
– Loop testing

• Data flow-based testing

N. Meng, B. Ryder 13

13

Selective Regression Testing

• Only need to rerun tests which might be
affected by program changes

• Idea: do parallel traversal of CFG(P) and
CFG(P’): when targets of like-labeled
edges differed, then use coverage
matrix to find tests that will exercise
that edge

N. Meng, B. Ryder 14

14

12/2/19

8

Basis Path Testing

• Independent Path
– Any path through the program that

produces at least one new set of processing
statements or a new condition

• To guarantee every statement is
executed at least once
– Statement coverage

N. Meng, B. Ryder 15

15

Basis Path Testing

• Cyclomatic complexity V(G)
– number of simple decisions + 1
– number of enclosed areas + 1

• A number of industry studies have indicated
that the higher V(G), the higher the
probability of errors.

N. Meng, B. Ryder 16

16

12/2/19

9

Basis Path Testing

N. Meng, B. Ryder 17

• What is the cyclomatic
complexity?
– V(G) = 6

• Design V(G) test cases that
cover all statements
– 1,2,3,4,6
– 1,2,3,4,7
– 1,2,3,5,8
– 1,2,3,5,9
– 1,2,10
– 1,2,10,1,2,10

1

10

76 98

2
3

4 5

17

Condition Testing

• To guarantee every branch of the
predicate nodes are covered
– Branch coverage
• True and false branches of each IF
• The two branches of a loop condition
• All alternatives in a SWITCH

N. Meng, B. Ryder 18

18

12/2/19

10

Condition Testing

• Design test cases to cover all
branches
– 1,2,3,4,6
– 1,2,3,4,7
– 1,2,3,5,8
– 1,2,3,5,9
– 1,2,10
– 1,2,10,1,2,10

N. Meng, B. Ryder 19

1

10

76 98

2
3

4 5

19

Statement Coverage vs. Branch Coverage

• Branch coverage => Statement coverage,
but not vise versa
– E.g., if (c) then s;
• By executing only with c=true, we will achieve

statement coverage, but not branch coverage

N. Meng, B. Ryder 20

20

12/2/19

11

Loop Testing

• Test cases only focus on the validity of
various loop constructs
– Simple loops
– Nested loops
– Concatenated loops
– Unstructured loops

N. Meng, B. Ryder 21

21

Test Cases for Simple Loops

• Suppose n is the maximum number of
allowable passes through the loop
– Skip the loop entirely
– Only one pass through the loop
– m passes through the loop where m < n
– n-1, n, n+1 passes through the loop

N. Meng, B. Ryder 22

22

12/2/19

12

Test Cases for Nested Loops

• Suppose the iteration parameter i for
outer loop is in [n1, n2] range, while
the parameter j for inner loop is in
[m1, m2]
– Set i=n1, test inner loop
– Set j=typical value [m1, m2], test outer

loop

N. Meng, B. Ryder 23

∈

23

Test Cases for Concatenated Loops

if (the loops are independent of each
other)
then

treat each as a simple loop
else

treat them as nested loop

N. Meng, B. Ryder 24

24

12/2/19

13

Unstructured Loops?

• Whenever possible, redesign!

N. Meng, B. Ryder 25

25

Homework 3: Testing

• Withdraw money from ATM
– Draw a CFG to cover all scenarios shown by

the communication diagram and alternative
descriptions

– Devise test cases based on that
– Feel free to define new operations if

necessary

N. Meng, B. Ryder 26

26

12/2/19

14

Requirements of Test Cases

• Cover all scenarios (successful + failing)
– basis path testing (assume limit = 3)
– loop testing
• for an n-iteration loop, test scenarios: 0, 1, n-1, n
• for an infinite loop, test scenarios: 0, 1, m (m > 1)

• List test cases for each technique
– Briefly explain why these test cases are

selected

N. Meng, B. Ryder 27

27

Data-Flow Based Testing

• Test connections between variable
definitions(D) and variable uses(U)
– i.e., write and read

• Terms
– DU pair: A pair of definition and use for some

variable
– DU path: a definition-clear path on the CFG

starting from a D to a U of a same variable
– Definition clear: value is not redefined on path

N. Meng, B. Ryder 28

28

12/2/19

15

Ways to Design Test Cases

• All DU pairs (All-
uses)
– Each DU pair is

executed by at least
one test case
• 1, 2, 3, 5, 6
• 1, 2, 4, 5, 7

N. Meng, B. Ryder 29

x = …①

if …2

…3 …4

if …5

y = x + … y = x * …
⑥ ⑦

29

Ways to Design Test Cases

• All DU paths
– Each simple (non

looping) DU path is
executed by at least
one test case
• 1, 2, 3, 5, 6
• 1, 2, 3, 5, 7
• 1, 2, 4, 5, 6
• 1, 2, 4, 5, 7

N. Meng, B. Ryder 30

x = …①

if …2

…3 …4

if …5

y = x + … y = x * …
⑥ ⑦

30

12/2/19

16

Ways to Design Test Cases

• All definitions
– For each definition,

there is at least one
test case which
exercises a DU pair
containing it
• 1, 2, 3, 5, 6

N. Meng, B. Ryder 31

x = …①

if …2

…3 …4

if …5

y = x + … y = x * …
⑥ ⑦

31

Relationship between All-Def, All-
Use, and All-DU-Paths?

N. Meng, B. Ryder 32

32

12/2/19

17

Black-box Testing

N. Meng, B. Ryder 33

requirements

events
input

output

• Black-box testing
focuses on the software
functional requirements

• Testers devise various
input conditions to fully
exercise all functional
requirements

33

Black-Box vs. White-Box

• Black-box is a complementary approach
instead of an alternative to white-box
techniques

N. Meng, B. Ryder 34

o check “doing the
right thing”

o check “doing things
rightly”

o applied during later
stages of testing

o performed early in
the testing process

o input-oriented o structure-oriented

34

12/2/19

18

Black-Box Methods

• Equivalence partition
• Boundary value analysis

N. Meng, B. Ryder 35

35

Equivalence Partition

• Divide the input domain of a program
into equivalence classes
– For different values from the same class,

the software should behave equivalently
• Test with values from different classes

to find errors

N. Meng, B. Ryder 36

36

12/2/19

19

How to Define Equivalence Classes?

• An input condition specifies a range
– Define one valid and two invalid equivalence

classes
– E.g., for input range [2, 5], the equivalent

classes are [-∞,2), [2, 5], (5,+∞)
• An input condition specifies a specific

value
– Define one valid and two invalid equivalence

classes

N. Meng, B. Ryder 37

37

How to Define Equivalence Classes?

• An input condition specifies a member
of a set
– Define one valid and one invalid equivalence

class
• An input condition is Boolean
– Classes “true” and “false”

N. Meng, B. Ryder 38

38

12/2/19

20

Boundary Value Analysis

• It complements equivalence partition
technique by
– focusing on boundary values of each

equivalent class,
– deriving test cases from the output domain

as well

N. Meng, B. Ryder 39

39

How to Pick Values to Test?

• If an input condition specifies a range [a,b]
– Design test cases with values a and b and just

above and just below a and b
• If an input condition specifies a number of

values
– Design test cases with values min and max and

surrounding values
• Apply the above guidelines to output

conditions
N. Meng, B. Ryder 40

40

12/2/19

21

How to Pick Values to Test?

• If internal program data structures
have prescribed boundaries, be certain
to design test cases to exercise the
data structure at its boundary
– e.g., a table has a defined limit of 100

entries

N. Meng, B. Ryder 41

41

Example: Search for a Value in an Array

• Input: an array and a value
• Output: return the index of some

occurrence of the value, or -1 if the
value does not exist

• One partition: size of the array
– 0, 1, n (n > 1)

• Another partition: location of the value
– 0, m(m>0 && m<n), n-1 (last), -1

N. Meng, B. Ryder 42

42

12/2/19

22

Example: Test Inputs

Array Value Output
empty 5 -1

[7] 7 0
[7] 2 -1

[1,6,4,7,2] 1 0
[1,6,4,7,2] 4 2
[1,6,4,7,2] 2 4
[1,6,4,7,2] 3 -1

N. Meng, B. Ryder 43

43

