Software Refactoring

Overview

What is refactoring?

When to apply refactoring?

How to apply refactoring?
Refactoring types

Obstacles of applying refactorings

11/13/19



Refactoring

« Definition
— The process of changing a software system
in such a way that it does not alter the
external behavior of the code yet improves
its internal structure

« Major source: Martin Fowler et al. 1999

—"Refactoring: Improving the Design of
Existing Code"

Goals of Refactoring

Improve software design

Make software easier to understand
Help to find bugs

Help to program faster

11/13/19



When to Apply Refactoring?

Design

— Requirements get changed

— More variations are revealed or expected
Implementation

— Add function

— Need to fix bugs

— Do code review

As software evolves, more refactorings
are applied

Implementation Refactoring

Make code changes

Run tests to ensure semantics is
preserved

If every test is passed, move on

Otherwise, fix the problem or undo the
change

11/13/19



Decide refactoring to apply

« Identify some "bad code smells”

— Duplicated code, long method, large class,

long parameter list, ...
* Match the bad code with known
refactoring patterns to decide what
refactoring to apply

* Note that bad code smells may appear
gradually as software evolves

Refactoring Types

Extract method/class/interface/ ...
Inline method/class/interface/ ...
Move field/method/ ...

Pull up field/method/ ...
Remove method/parameter/...

11/13/19



Extract Class

public class Customer {

}

private String name; *

private String phoneAreaCode;
private String phoneNumber;

public class PhoneInfo {

public class Customer {

}

private String areaCode; °
private String number:;

private String name;
private PhoneInfo phone;

Too much phone
info detail as part
of the Customer
class violates high
cohesion principle

Split the class into
two to keep phone
info in a separate
class

Extract Interface

public class Customer {

}

private String name;
private String getName() {
return name;

}
public void setName(String string) {

name = string;
}
public String toXML() {

return “<Customer><Name>" + name + "</Name></Customer>";

}

10

11/13/19



Extract Interface cont.

* Motivation
— Some clients only use a subset of a class'’
responsibilities
 E.g., ToXML()
— There are several classes providing certain
functions in common
« E.g., Customer, Employee, Product
« Solution

— Declare the subset of operations ina
separate interface

11

public interface Serializable ToXML{
public abstract String toXML();

} public class Customer implements Serializable ToXML {
private String name;
private String getName() {

return name;

public void setName(String string) {
name = string;

}
public toXML() {
return “<Customer><Name>" + name +
“</Name></Customers";

}
}

« Benefits

— Information hiding: only expose the relevant
operations to specific clients

12

11/13/19



Obstacles of Refactoring

e Problem: Databases
e Reason

— Business applications are tightly coupled to
database schema

— With business logic change, you may also need
to change database schema and migrate data

* Advice

— Put a separate layer between object model
and database model

13

Obstacle 2: Changing Interfaces

* Problem: Some refactoring, such as
"Rename Method", modify interfaces

* Reasons: There is a problem if the
interface is used by code that you
cannot find and change

« Advice
— Don't publish interfaces prematurely

— Maintain both the old and new interfaces
for a while

14

11/13/19



Obstacle 3: Design Changes That Are
Difficult to Refactor

* Problem: some design decisions are so
central that you cannot count on
refactoring to change your mind later

 Advice:

— Think about design alternatives and assess

difficulty of refactoring from one to
another

— Go with the simplest one if refactoring is
not difficult; otherwise, put more effort
into design

15

11/13/19



