
10/24/19

1

Detailed Design

1

Overview

• Design Class Diagrams (DCDs)
– Type information
– Accessibility
– Visibility
– Attributes
–Methods

• Mapping design to code

N. Meng, B. Ryder 2

2

10/24/19

2

Design Class Diagrams

• Differences from Conceptual Class
Diagrams in Domain model
– Contain types, directed associations with

multiplicities, numbered actions
– Provide visibility between objects

N. Meng, B. Ryder 3

3

Type Information

• Types of attributes
• Types of method parameters/returns

(can be omitted)

N. Meng, B. Ryder 4

Sale
date: Date

isComplete:bool
…

4

10/24/19

3

Accessibility of Methods and Fields

• public: can be accessed by any code
– UML notation: +foo

• private: can be accessed only by code inside
the class
– UML notation: -foo

• protected: can be accessed only by code in
the class and in its subclasses
– UML notation: #foo

• Fields usually are not public, but have getters
and setters instead

N. Meng, B. Ryder 5

5

Visibility between Objects

• If object A sends a message to object
B, then B must be visible to A
– i.e., A should have access to a reference

(pointer) to B

N. Meng, B. Ryder 6

6

10/24/19

4

Attribute & Parameter Visibility

• Reference to B is an attribute of A
– Relatively permanent: often exists for the

lifetime of the objects (common)
– E.g., Register needs to send getSpec(id) to

ProductCatalog

• Reference to B is a parameter to a
method of A
– Relatively temporary: exists only for the

scope of the method

class Register {
private ProductCatalog catalog; ... }

N. Meng, B. Ryder 7

7

Local Visibility

• B is a local object within a method of A
– The object is created inside the method
– Relatively temporary: only exists within the

scope of the method
– E.g., the subsum(subsum = s.getSubTotal();)

inside getTotal() method

N. Meng, B. Ryder 8

8

10/24/19

5

Global Visibility

• B is defined in a scope that encloses A’s
scope
– E.g., a static field is “global” for all

methods inside its declaring class
– Relatively permanent: typically persists as

long as A and B exist
– Should be used cautiously: may violate the

principles of object orientation
– Should use Singleton pattern instead

N. Meng, B. Ryder 9

9

“create” messages

• create messages:
– Language-independent
– No create methods in the design classes

• For many languages: constructor(s)
– Sometimes people do not show constructors

in the DCD: to reduce the clutter

N. Meng, B. Ryder 10

10

10/24/19

6

getters and setters for attributes

• For non-public fields
– E.g., for price attribute of type Money
• getPrice(): Money
• setPrice(amt: Money)

• Methods are typically not shown in DCD

N. Meng, B. Ryder 11

11

UML Class Diagram

N. Meng, B. Ryder 12

private
static
field

public
static
method

public
constructor

note: “static constructor”
is meaningless: by definition,
a constructor is invoked on an object

12

10/24/19

7

Mapping Design to Code

• DCDs -> classes in code
– DCD: class names, methods, attributes,

superclasses, associations, etc.
– Tools can do this automatically

• Interaction diagrams -> method bodies
– Interactions in the design model imply that

certain method calls should be included in a
method’s body

N. Meng, B. Ryder 13

13

Mapping Associations (* : 1, 1 : 1)

N. Meng, B. Ryder 14

public class SalesLineItem {
private int quantity;
private ProductSpecification productSpec;
public SalesLineItem(ProductSpecification s, int q) {…}

}

SalesLineItem
quantity:Integer

getSubtotal()

Product
Specification
descr:String
price:Money
id:ItemID

…

Described-by
1*

14

10/24/19

8

Mapping Associations (1 : *)

N. Meng, B. Ryder 15

Sales
LineItem

quantity:Integer
…

Sale
…
…

Contains
1 1..*

public class Sale {
private List<SalesLineItem> lineItems = new

ArrayList<SalesLineItem>();
private Date date = new Date();
public void makeLineItem(ProductDescription desc, int qnty)
{

lineItems.add(new SalesLineItem(desc, qnty));
}
…

}
15

Mapping Associations (* : *)

N. Meng, B. Ryder 16

Student
…
…

Course
…
…

Contains1 1..*

1..* 1Takes
public class Course {

private List<Student> students = new ArrayList<Student>();
public addStudent(int sid) {…}

}

public class Student {
private List<Course> courses = new ArrayList<Course>();
public addCourse(int cid) {…}

}

16

