OO Testing

Overview

« OO Software Testing
« OO Unit Testing: class testing
* OO Integration Testing: multiple class

testing

N. Meng, B. Ryder

11/16/15

OO Software Testing

Some of the older testing techniques
are still useful
— Class testing is similar to unit testing

— Multiple class testing is similar to
integration testing

New testing techniques are specially
designed for OO software
— State-based testing

OO Unit Testing: Class Testing

Traditional view of "unit": a procedure

In OO: a method is similar to a
procedure

But a method is a part of a class, and is
tightly coupled with other methods and
fields in the class

The smallest testable unit is a class

11/16/15

Class Testing

DU pairs can still be used to design data
flow based testing

— However, test cases should cover both DU
pairs inside a method and crossing method
boundaries

s i.e., intra-method and inter-method
 Testing method ordering
« Testing polymorphism

DU-Pair Testing Example

class A {
private int index;
public void m1() {
indexg

m2(); e
private void m2() {\\..‘fx‘:*index;)
public void m3() { ... z = index; ... }
}
test 1: call m1, which writes index and then call
m2 which reads the value of index
test 2: call m1, and then call m3

N. Meng, B. Ryder 6

11/16/15

Testing Method Ordering

« Random testing

— Conduct random test to exercise different
call sequences and different class instance
life histories

* Partition testing

— Similar to equivalence partition to reduce
test cases

Account

Random Testing Example d;;g"pfg)o
wifﬁgi;w()
* T€S'|' case 1 balance()

. . summarize()
— openesetupedepositedeposite cr‘edliTLimiT()
balancessummarizeswithdrawsclose L=

» Test case 2
— openesetupedepositewithdrawedeposite
balanceecreditLimitewithdraweclose
 Limitation
— too random to be effective
— may test some infeasible cases

11/16/15

Partition Testing

 State-based partitioning

— To categorize class operations based on
their ability to change the state of the
class

— To design different test cases to

* cover every set of operations
« cover every state of the class

Finite State Machine Diagram

* Two types of operations H.—

— State operations
« open(), setup(), deposit() st

wi’rhdr:aw(), clolse() l . C_JCKDCD
aance Dwnhdraw

credit
accntinfo

withdrawal
(final)

—Nonstate operations

* balance(), summarize(), o —— "
creditLimit()

11/16/15

Test Cases

* Test case 1
— openesetupedeposit(initial)swithdraw(final)
close
« Test case 2
— openesetupedeposit(initial)edepositebalance*
creditewithdraw(final)eclose
» Test case 3
— openesetupedeposit(initial)edeposite
withdraweaccountInfoewithdraw(final)eclose

N. Meng, B. Ryder 11

Polymorphism foel
D

« Suppose class X has a method

calling a.foo(), where variable fooQ

a is of type A

— The function call may invoke
A.foo(), B.foo(), C.foo(), D.foo()

« How to “drive” call site a.foo()
through all possible bindings?

N. Meng, B. Ryder 12

11/16/15

Testing Polymorphism

* All-receiver-classes: execute every
possible receiver of type A
— A.foo(), B.foo(), C.foo(), D.foo()
 All-invoked-methods: execute with
receivers whose classes define foo()
— A.foo() (or B.foo() or D.foo()), C.foo()

N. Meng, B. Ryder 13

How to Find All Possible Method
Targets?

* Class Hierarchy Analysis (CHA)

— Conduct compile-time analysis to get type
hierarchy info and find all possible method
targets at call site a.foo()

* Know all subclasses of class A

* Know all methods defined in those classes and A
with method signature foo()
« Every found method is a possible method target

N. Meng, B. Ryder 14

11/16/15

Refinement: Rapid Type Analysis

 Limitation of CHA

— Not all "possible” method targets are

actually invoked
* Rapid Type Analysis (RTA)

— Also collect info on which classes are

actually instantiated

N. Meng, B. Ryder

Example
static void main(){ class A {
|
B bl = new B():) fooO){.)
fB(:lz);: new C() class B extends A{

foo() {..}

g(b2);

} }

static void f(A a2){/ class C extends B({
a2.foo(); foo() {..}

} }

static void (B b2){/ class D extends B{
b2.foo();

foo(){...}
))

cf Frank Tip, OOPSLA’ 00

A
B
C

D

11/16/15

CHA Result

o ' class A {
static void main({ -~ ¢ 0y

B bl = new B(); :’
Bb2 = newC(); | !
' class B extends A{

f(b1);
g(b2);\ foo() {..}
} I

static void f(A a2){i/ class C extends B

a2.foo(). K& -,"r' -=» foo() {..}

} Y

static void Q(B%ass D extends B{
b2.foo(); 3

""""" foo(){..}
} } ‘ Cone(Declared_type(receiver)) .
RTA Result

static void main({ o

aric vol al

B bl = new B(): } foo()(.J

5(512).: new c() class B extends A{

' foo() {.}

g(b2);\
}

static void f(A a2){// class C extends B({

a2.foo(); ~A-7-=» foo() {..}

} !

static void 9(3%055 D extends B{
b2.foo(); =

foo(){...}

(@)
\w—>

=]

} } ‘ Cone(Declared_type(receiver)) A Instantiated

N. Meng, B. Ryder

11/16/15

Myths about Inheritance

« "If we have a well-tested superclass, we
can reuse its code (in subclasses,
through inheritance) without retesting
inherited code”

* "A good-quality test suite used for a
superclass will also be good for a
subclass”

Problems with Inheritance

* P1: Incorrect initialization of superclass
attributes by the subclass

 P2: Missing overriding methods
— Typical example: and

* P3: Subclass may cause side effects and
violate an invariant from the superclass

11/16/15

10

Example 1

class A {
protected int x: // invariant: x > 100
void m() { // correctness depends on
// the invariant ..} .. }

class B extends A {
voidmiQ){x=1; .} .}

« If m1 has a bug and breaks the
invariant, m is incorrect in the context
of B, even though it is correct in A

—P1,P3

Example 2

class A {
void m() {}
voidm2 { ..} ..}

class B extends A {
void m2() { ..} .. }

- If is buggy, so is called on B
instance
~P3

11/16/15

11

Testing of Inheritance

* Principle: inherited method should be
retested in the context of a subclass

— Example 1: if we change some method ina
superclass, we need to retest inside all
subclasses that inherit it

— Example 2: if we add or change a subclass, we
need to retest all methods inherited from a
superclass in the context of the new/changed
subclass

— Goal: check behavioral conformance of the
subclass w.r.t. to the superclass (LSP)

N. Meng, B. Ryder 23

Multiple Class Testing

« UML interaction diagrams: sequences of
messages among a set of objects

* Basic idea: devise tests that cover all
diagrams, all messages, and all
conditions inside each diagram

— If a diagram does not have conditions and
iteration, it contains only one path

N. Meng, B. Ryder 24

11/16/15

12

Communication Diagram

:Customer

1:cardInserted
l 2:password

3:withdraw
4:amount 4 _2:validateWithdrawA
5:log of f 4 3:debit
—_
:System| ATMOwner:Bank
Test case:

l 2.1:verifyAccountPwd .
4.1:validateWithdrawc cardInsertedepasswordeverif

: yAccountPwdewithdraweamou
cardIssuer:Bank ntevalidateWithdrawCevalida

teWithdrawAe«debitelogoff

Alternative Scenario 1

* If the password is not correct
— ATM prompts the customer to try again
— Customer enters a password
— ATM requests the card issuer bank to
verify again
— Repeat the above steps until verification
succeeds or trialNumber == limit

11/16/15

13

Alternative Scenario 2

* If the verification finally fails and no
retry is allowed

— ATM reports the failure and returns the
card

Alternative Scenario 3

« If the amount to withdraw is greater
than the cash amount in ATM
— ATM reports "not enough money”
— ATM prompts the customer to retry

— If the customer wants to cancel the
transaction, logoff; Otherwise, the
customer enters an amount

— Repeat the above steps until the amount
meets the requirement

11/16/15

14

Homework 3: Multiple Class Testing

« Withdraw money from ATM

— Draw a CFG to cover all scenarios shown by
the communication diagram and alternative
descriptions

— Devise test cases based on that

— Feel free to define new operations if
necessary

Requirements of Test Cases

« Cover all scenarios (successful + failing)
— basis path testing (assume limit = 3)
—loop testing
« for an n-iteration loop, test scenarios: 0,1, n-1, n
« for an infinite loop, test scenarios: 0, 1, m (m > 1)
« List test cases for each technique

— Briefly explain why these test cases are
selected

11/16/15

15

