
9/1/15	

1	

Software Process

Overview

•  What is software process?
•  Generic process framework

•  Examples of process models
•  Unified Process (UP)
•  Agile software development

N.	
 Meng,	
 B.	
 Ryder	
 2	

9/1/15	

2	

Software Process

•  Definition [Pressman]
– a framework for the tasks that are

required to build high-quality software.
– to provide stability, control and

organization to an otherwise chaotic
activity

N.	
 Meng,	
 B.	
 Ryder	
 3	

What does SW process mean?

•  For a single programmer
•  Planning (time, resources, assignments)
•  Design and development
•  Tracking and measuring progress

•  For a team of practitioners
•  Organizational planning (time, resources, etc.)
•  Hiring, training, tool acquisition, etc.
•  Process assessment and improvement

•  For software engineering in general
•  Helps organize SE around ‘best practices’

N.	
 Meng,	
 B.	
 Ryder	
 4	

9/1/15	

3	

Elements of SW process
Term Examples

o  People o  Software developers, project
managers, customers

o  Tasks o  Analyze requirements
o  Work products o  Requirements specification
o  Planning o  Estimate needed resource, time,

defects
o  Conducting o  Track progress and work results
o  Assessing o  Define and measure metrics like

quality, progress, etc.

A process defines who is doing what, when and how
to reach a certain goal.

N.	
 Meng,	
 B.	
 Ryder	
 5	

Generic View of SW Process

Definition phase

Development phase

Support phase

U
m
brella activities

N.	
 Meng,	
 B.	
 Ryder	
 6	

9/1/15	

4	

Definition Phase
•  Tasks related to problem definition
–  What? - requirements, constraints, environment, etc.

•  Step 1: System engineering
–  Ascertain roles of hardware, software, people,

databases, operational procedures, etc. in system
•  Step 2: Analysis of the problem
–  Requirement analysis

•  Understanding what the users need and want
–  Domain analysis

•  Illustrate key concepts in a set of SW systems (reuse)
•  Step 3: Project planning
–  Resources (e.g., people), cost, schedule

N.	
 Meng,	
 B.	
 Ryder	
 7	

Development Phase

•  Tasks related to problem solution
– How? - architecture, programming, testing, etc.

•  Step 1: software design (the blueprint)
– Design models that describe structure,

interactions, etc.
•  Step 2: code generation/implementation
•  Step 3: software testing

– Goal: uncover as many errors as possible

N.	
 Meng,	
 B.	
 Ryder	
 8	

9/1/15	

5	

Support (Maintenance) Phase

•  Tasks related to software evolution
– Changes? – Definition and development in the

context of existing software
•  Adaptation to change in the environment
– New hardware, changes in OS, business rules, etc.

•  Correction of defects (Y2K problem, $308B)
•  Enhancements (new features, etc.)
•  Refactoring (to ease future changes)

N.	
 Meng,	
 B.	
 Ryder	
 9	

Some Umbrella Activities

•  Project management
– Tracking and control of people, process, cost, etc.

•  Quality assurance (QA)
– Formal technical reviews of work products
– Software testing
– Keeping docs consistent with code base

•  Configuration management
– Controls the changes in work products using

systems like SVN, Git

N.	
 Meng,	
 B.	
 Ryder	
 10	

9/1/15	

6	

Observations

•  Process models are idealizations
– The real world is a very complex place

•  They can be very difficult to execute
– Conformance can be faked

•  But, they provide a roadmap for SE work to
organize an otherwise chaotic activity

N.	
 Meng,	
 B.	
 Ryder	
 11	

Code-and-Fix Process

•  The first thing people tried in the 1950s
 1.Write program
 2.Improve it (debug, add functionality,
 improve efficiency, ...)
 3.GOTO 1

•  Works for small 1-person projects and
for some CS course assignments

N.	
 Meng,	
 B.	
 Ryder	
 12	

9/1/15	

7	

Problems with Code-and-Fix

•  Poor match with user needs
•  Bad overall structure – No blueprint
•  Poor reliability - no systematic testing
•  Maintainability? What’s that?
•  What happens when the programmer

quits?

N.	
 Meng,	
 B.	
 Ryder	
 13	

Code-and-Fix process

N.	
 Meng,	
 B.	
 Ryder	
 14	

9/1/15	

8	

Code-and-Fix Process

N.	
 Meng,	
 B.	
 Ryder	

From McConnell, After the Goldrush, 1999

15	

A More Advanced Process

N.	
 Meng,	
 B.	
 Ryder	
 16	

9/1/15	

9	

Examples of Process Models

•  Waterfall model
•  Prototyping model
•  Spiral model
•  Incremental model

N.	
 Meng,	
 B.	
 Ryder	
 17	

Waterfall Model

•  The “classic” process model since 1970s
– Also called “software life cycle”

N.	
 Meng,	
 B.	
 Ryder	
 18	

Analysis

Testing & Integration

Maintenance

Design

Implementation

9/1/15	

10	

Waterfall Phases

•  Analysis: Define problems
–  requirements, constraints, goals and domain

concepts
•  Design: Establish solutions
– System architecture, components, relationship

•  Implementation: Implement solutions
•  Testing and integration: Check solutions
– Unit testing, system testing

•  Maintenance: the longest phase

N.	
 Meng,	
 B.	
 Ryder	
 19	

Analysis

Testing & Integration

Maintenance

Design

Implementation

Key Points of the Model

•  The project goes through the phases
sequentially

•  Possible feedback and iteration across
phases
– e.g., during coding, a design problem is

identified and fixed
•  Typically, few or no iterations are used
– e.g., after a certain point of time, the

design is “frozen”

N.	
 Meng,	
 B.	
 Ryder	
 20	

9/1/15	

11	

Waterfall Model Assumptions

•  All requirements are known at the start and
stable

•  Risks(unknown) can be turned into known
through schedule-based invention and
innovation

•  The design can be done abstractly and
speculatively
–  i.e., it is possible to correctly guess in advance how

to make it work
•  Everything will fit together when we start the

integration

N.	
 Meng,	
 B.	
 Ryder	
 21	

How was the model developed?

a)  A group of researchers developed and
proposed it as the best option of
existing methods

b) A group of practitioners innovated a
method that became the most widely
used model

c)  A person copied a picture of a method
that he understood and could explain
and put it into a standard document

N.	
 Meng,	
 B.	
 Ryder	
 22	

Winston Royce wrote a recommendation about how to
structure process for large software projects

based on his experiences from NASA

9/1/15	

12	

Success story: space shuttle software

N.	
 Meng,	
 B.	
 Ryder	
 23	

As the 120-ton space
shuttle sits
surrounded by almost
4 million pounds of
rocket fuel, exhaling
noxious fumes, visibly
impatient to defy
gravity, its on-board
computers take
command.

Charles Fishman, 1996

“This software is bug-free”

•  Impressive statistics
– The last 3 versions of the

program--420,000 lines of code had just 1
error each

– The last 11 versions of the software had a
total of 17 errors

– Commercial programs of equivalent
complexity would have 5,000 errors

N.	
 Meng,	
 B.	
 Ryder	
 24	

9/1/15	

13	

How did they write the right stuff?

•  1/3 of the process before coding
•  NASA and Lockhead Martin groups agree

in the most minute detail about everything
•  Specs are almost pseudo-code
•  Nothing in the specs is changed without

agreement and understanding
•  Task: upgrade software to add GPS

navigation
–  1.5% changes in program/6366 LOC
– 2500 page specs for the change

N.	
 Meng,	
 B.	
 Ryder	
 25	

How expensive is the software?

•  260 people
•  >40,000 pages of specifications
•  20 years
•  $35 million Annual budget
•  $700 million overall budget
•  700 million/420k = $1600/line of code

N.	
 Meng,	
 B.	
 Ryder	
 26	

9/1/15	

14	

Pros and Cons

•  Pros: widely used, systematic, good for
projects with well-defined requirements
– Makes managers happy

•  Cons:
– The actual process is not so sequential

•  A lot of iterations may happen
– The assumptions usually don’t hold
– Working programs are not available early

•  High risk issues are not tackled early enough
– Expensive and time-consuming

N.	
 Meng,	
 B.	
 Ryder	
 27	

When would you like to use waterfall?

N.	
 Meng,	
 B.	
 Ryder	
 28	

•  Work for big clients
enforcing formal
approach on vendors

•  Work on fixed-scope,
fixed-price contracts
without many rapid
changes

•  Work in an experienced
team

9/1/15	

15	

Observation

•  Top three reasons for at least partial
failure projects
–  lack of user input
–  incomplete requirements, and
– changing requirement

N.	
 Meng,	
 B.	
 Ryder	
 29	

Standish group 1995

Prototyping Model

•  Build a prototype when customers have
ambiguous requirements

N.	
 Meng,	
 B.	
 Ryder	
 30	

Analysis

Testing &
Integration

Maintenance

Design

Implementation

Prototyping
Customer
Evaluation

Review &
Update

Customer
satisfied

9/1/15	

16	

Key Points of the Model

•  Iterations: customer evaluation followed
by prototype refinement

•  The prototype can be paper-based or
computer-based

•  It models the entire system with real data
or just a few screens with sample data

•  Note: the prototype is thrown away!

N.	
 Meng,	
 B.	
 Ryder	
 31	

Success stories of prototyping

N.	
 Meng,	
 B.	
 Ryder	
 32	

•  Organizations of all types do it
– Boeing builds digital prototypes of its

aircraft allowing the detection of design
conflicts

– Disney uses storyboards to work through
the process of producing feature-length
films

•  Online systems and web interfaces

9/1/15	

17	

Pros and Cons

•  Pros
– Facilitate communication about requirements
– Easy to change or discard
– Educate future customers

•  Cons
–  Iterative nature makes it difficult to plan and

schedule
– Excessive investment in the prototype
– Bad decisions based on prototype

•  E.g., bad choice of OS or PL

N.	
 Meng,	
 B.	
 Ryder	
 33	

When would you like to use prototyping?

N.	
 Meng,	
 B.	
 Ryder	
 34	

•  When the desired
system has a lot of
interactions with users

9/1/15	

18	

Spiral Model

•  A risk-driven evolutionary model that combines
development models (waterfall, prototype, etc.)

35	

Spiral model
(SOM)

Spiral Phases

•  Objective setting
– Define specific objectives, constraints,

products, plans
–  Identify risks and alternative strategies

•  Risk assessment and reduction
– Analyze risks and take steps to reduce risks

•  Development and validation
–  Pick development methods based on risks

•  Planning
– Review the project and decide whether to

continue with a further loop

N.	
 Meng,	
 B.	
 Ryder	
 36	

9/1/15	

19	

What Is Risk?

•  Something that can go wrong
– People, tasks, work products

•  Risk management
– risk identification
– risk analysis
•  the probability of the risk, the effect of the risk

– risk planning
•  various strategies

– risk monitoring

N.	
 Meng,	
 B.	
 Ryder	
 37	

Risk Planning [Sommerville]

N.	
 Meng,	
 B.	
 Ryder	
 38	

Risk Strategy
o  Recruitment
problems

o  Alert customer of potential difficulties and the
possibility of delays, investigate buying-in-components

o  Defective
components

o  Replace potentially defective components with bought-
in components of known reliability

o  Requirements
changes

o  Derive traceability information to assess requirements
change impact, maximize information hiding in the design

o  Organizational
financial problems/
restructuring

o  Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business

o  Underestimated
development time

o  Investigate buying-in components, investigate the use
of a program generator

9/1/15	

20	

Key Points of the Model

•  Introduce risk management into process
•  Develop evolutionary releases to
– Implement more complete versions of

software
– Make adjustment for emergent risks

N.	
 Meng,	
 B.	
 Ryder	
 39	

Pros and Cons

•  Pros
– High amount of risk analysis to avoid/reduce risks
– Early release of software, with extra

functionalities added later
– Maintain step-wise approach with “go-backs” to

earlier stages
•  Cons
– Require risk-assessment expertise for success
– Expensive

N.	
 Meng,	
 B.	
 Ryder	
 40	

9/1/15	

21	

When to use the model?

N.	
 Meng,	
 B.	
 Ryder	
 41	

•  Large and mission-
critical projects

•  Medium to high-risk
projects

•  Significant changes are
expected

Incremental Model

•  A sequential of waterfall models

N.	
 Meng,	
 B.	
 Ryder	
 42	

Analysis

Testing & Integration

Design
Implementation

Iteration n: 3 weeks
(for example)

Analysis

Testing & Integration

Design
Implementation

Iteration n+1: 3 weeks
(for example)

Release n Release n + 1

Feedback, adaptation

9/1/15	

22	

Key Points of the Model

•  Iterative: many releases/increments
– First increment: core functionality
– Successive increments: add/fix functionality
– Final increment: the complete product

•  Require a complete definition of the whole
system to break it down and build
incrementally

N.	
 Meng,	
 B.	
 Ryder	
 43	

Pros and Cons

•  Pros
– Early discovery of software defects
– Early delivery of working software
– Less cost to change/identify requirements

•  Cons
– Constant changes (“feature creep”) may

erode system architecture

N.	
 Meng,	
 B.	
 Ryder	
 44	

9/1/15	

23	

When to use the model?

N.	
 Meng,	
 B.	
 Ryder	
 45	

•  The requirements of
the complete system
are clear

•  Major requirements
must be defined while
some details can evolve
over time

•  Need to get a product
to the market early

Spiral model vs. increment model

•  Iterative models
– Most projects build

software iteratively
•  Risk-driven vs.

client-driven

N.	
 Meng,	
 B.	
 Ryder	
 46	

9/1/15	

24	

Unified Process (UP)

•  An example of iterative process for
building object-oriented systems
– Very popular in the last few years
– By the same folks who develop UML

•  It provides a context for our discussion
of analysis and design

N.	
 Meng,	
 B.	
 Ryder	
 47	

A Little History

•  “The three amigos”: Grady Booch, Ivar
Jacobson, James Rumbaugh
– Early 90s: Separated methodologies for object-

oriented analysis and design (OOAD)
– 1996: Created the Unified Modeling Language

(UML)
– 1999: Defined the Unified Process (UP) in

Rational Software Inc.
•  Refinement: Rational Unified Process (RUP)

– Adaptable process framework + tools

N.	
 Meng,	
 B.	
 Ryder	
 48	

9/1/15	

25	

Phases in UP

N.	
 Meng,	
 B.	
 Ryder	
 49	

Inception Elaboration Construction Transition

•  Inception: preliminary investigation
•  Elaboration: analysis, design, and some coding
•  Construction: more coding and testing
•  Transition: beta tests and development
•  Each phase may be enacted in an iterative

way, and the whole set of phases may be
enacted incrementally

Inception Phase

•  Investigate approximate, business case,
scope, and vague estimates
– Should we even bother?

•  Some basic analysis to decide whether
to continue or stop

•  Inception is NOT “requirement” in
waterfall

N.	
 Meng,	
 B.	
 Ryder	
 50	

9/1/15	

26	

Elaboration Phase

•  Most requirement analysis
•  Most design
•  Some coding and testing
–  Implementation and testing for core architecture

and high-risk requirements
•  Deeper investigation of scope, risks, and

estimates
•  Work products
– Requirement models (UML use cases)
– An architectural description
– A development plan

N.	
 Meng,	
 B.	
 Ryder	
 51	

Construction Phase

•  More coding and testing
– Implementation and testing for the

remaining lower risk and easier elements
– Integration

•  Work products ready for delivery
– A working software system
– Associated documentation

N.	
 Meng,	
 B.	
 Ryder	
 52	

9/1/15	

27	

Transition Phase

•  Beta tests and deployment
– Moving the system from the development

community to the user community
– This is important but ignored in most

software process model
•  Work products
– A documented software system that is

working correctly in its operational
environment

N.	
 Meng,	
 B.	
 Ryder	
 53	

Iteration Length

•  Iteration should be short (2-6 weeks)
– Small steps, rapid feedback and adaptation
– Massive teams with lots of communication – but no

more than 6 months
•  Iterations should be timeboxed (fixed length)
–  Integrate, test and deliver the system by a

scheduled data
–  If not possible: move tasks to the next iteration

N.	
 Meng,	
 B.	
 Ryder	
 54	

9/1/15	

28	

Reasons for Timeboxing

•  Improve programmer productivity with
deadlines

•  Encourage prioritization and decisiveness
•  Team satisfaction and confidence
– Quick and repeating sense of completion,

competency, and closure
– Increase confidence for customers and

managers

N.	
 Meng,	
 B.	
 Ryder	
 55	

UP Disciplines

•  Discipline: an activity and related artifact(s)
•  Artifact: any kind of work product
•  We will focus on artifacts related to two

disciplines
– Requirement modeling

•  requirement analysis + use-case models , domain
models, and specs.

– Design
•  design + design models

N.	
 Meng,	
 B.	
 Ryder	
 56	

9/1/15	

29	

Agile Software Development

•  A timeboxed iterative and evolutionary
development process

•  It promotes
– adaptive planning
– evolutionary development,
–  incremental delivery
– rapid and flexible response to change

N.	
 Meng,	
 B.	
 Ryder	
 57	

Any iterative method, including the UP, can be
applied in an agile spirit.

The Agile Manifesto

•  We are uncovering better ways of
developing software by doing it and helping
others do it. Through this work we have
come to value:
–  Individuals and interactions over Processes

and tools
– Working software over Comprehensive

documentation
– Customer collaboration over Contract

negotiation
– Responding to change over Following a plan

N.	
 Meng,	
 B.	
 Ryder	
 58	

Kent Beck et al. 2001

9/1/15	

30	

Key Points of Agile Modeling

•  The purpose of modeling is primarily to
understand, not to document

•  Modeling should focus on the smaller
percentage of unusual, difficult, tricky parts of
the design space

•  Model in pairs (or triads)
•  Developers should do the OO design modeling

for themselves
•  Create models in parallel
– E.g., interaction diagram & static-view class diagram

N.	
 Meng,	
 B.	
 Ryder	
 59	

Models are inaccurate

•  only tested code demonstrates the true
design

•  treat diagrams as throw-away
explorations

•  Use the simplest tool possible to
facilitate creative thinking
– E.g., sketching UML on whiteboards

•  Use “good enough” simple notation

N.	
 Meng,	
 B.	
 Ryder	
 60	

9/1/15	

31	

Agile Methods

•  Agile Unified Process (Agile UP)
•  Dynamic systems development method

(DSDM)
•  Extreme programming (XP)
•  Feature-driven development (FDD)
•  Scrum

N.	
 Meng,	
 B.	
 Ryder	
 61	

Agile UP

•  Keep it simple
–  Prefer a small set of UP activities and artifacts
– Avoid creating artifacts unless necessary

•  Planning
– For the entire project, there is only a high-level

plan (Phase Plan), to estimate the project end
date and other major milestones

– For each iteration, there is a detailed plan
(Iteration plan) created one iteration in advance

N.	
 Meng,	
 B.	
 Ryder	
 62	

9/1/15	

32	

Pros and Cons

•  Pros
– Customer satisfaction by rapid, continuous

delivery of useful software
– Close, daily cooperation between business people

and developers
– Better software quality and lower cost

•  Cons
–  People may lose sight of the big picture
– Heavy client participation is required
–  Poor documentation support for training of new

clients/programmers
N.	
 Meng,	
 B.	
 Ryder	
 63	

When to use agile methods?

•  Changing
requirements

•  Faster time to
market and
increased
productivity

•  Frequently used in
start-up companies

N.	
 Meng,	
 B.	
 Ryder	
 64	

9/1/15	

33	

A Borrowed Joke

How many software engineers does it take
to change a light bulb?

Five. Two to write the specification, one
to screw it in, and two to explain why the
project was late.

N.	
 Meng,	
 B.	
 Ryder	
 65	

