Software Process

Overview

* What is software process?
* Generic process framework

« Examples of process models

« Unified Process (UP)
* Agile software development

N. Meng, B. Ryder

9/1/15

9/1/15

Software Process

 Definition [Pressman]
—a framework for the tasks that are
required to build high-quality software.

—to provide stability, control and
organization to an otherwise chaotic
activity

What does SW process mean?

* For a single programmer
* Planning (time, resources, assignments)
* Design and development
* Tracking and measuring progress

* For a feam of practitioners
* Organizational planning (time, resources, etc.)
* Hiring, training, tool acquisition, etc.
* Process assessment and improvement
 For software engineering in general
* Helps organize SE around ‘best practices’

Elements of SW process

Term Examples

[People [0 Software developers, project
managers, customers

[0 Tasks O Analyze requirements

[0 Work products [0 Requirements specification

[Planning [Estimate needed resource, time,
defects

[0 Conducting O Track progress and work results

[Assessing [0 Define and measure metrics like

quality, progress, etc.

to reach a certain goal.

Generic View of SW Process

[Definition phase }—>

[Development phase }—>

[Support phase }—>

N. Meng, B. Ryder 6

[S2141A149D D||24qui }

9/1/15

Definition Phase

Tasks related to problem definition

— What? - requirements, constraints, environment, etc.

Step 1: System engineering

— Ascertain roles of hardware, software, people,
databases, operational procedures, etc. in system

Step 2: Analysis of the problem
— Requirement analysis
+ Understanding what the users need and want
— Domain analysis
* Illustrate key concepts in a set of SW systems (reuse)
Step 3: Project planning

— Resources (e.g., people), cost, schedule

N. Meng, B. Ryder 7

Development Phase

Tasks related to problem solution

— How? - architecture, programming, testing, etc.

Step 1: software design (the blueprint)

— Design models that describe structure,
intferactions, etc.

Step 2: code generation/implementation

Step 3: software testing
- Goal: uncover as many errors as possible

9/1/15

Support (Maintenance) Phase

Tasks related to software evolution

— Changes? - Definition and development in the
context of existing software

Adaptation to change in the environment

— New hardware, changes in OS, business rules, etc.

Correction of defects (Y2K problem, $308B)
Enhancements (new features, etc.)
Refactoring (to ease future changes)

Some Umbrella Activities

* Project management

— Tracking and control of people, process, cost, etc.

* Quality assurance (QA)
— Formal technical reviews of work products
— Software testing
— Keeping docs consistent with code base

« Configuration management

— Controls the changes in work products using
systems like SVN, Git

9/1/15

Observations

* Process models are idealizations
— The real world is a very complex place

* They can be very difficult to execute
— Conformance can be faked

« But, they provide a roadmap for SE work to
organize an otherwise chaotic activity

N. Meng, B. Ryder 11

Code-and-Fix Process

* The first thing people tried in the 1950s

1.Write program
2.Improve it (debug, add functionality,
improve efficiency, ...)

3.60T01

« Works for small 1-person projects and
for some CS course assignments

N. Meng, B. Ryder 12

9/1/15

Problems with Code-and-Fix

Poor match with user needs

Bad overall structure - No blueprint
Poor reliability - no systematic testing
Maintainability? What's that?

What happens when the programmer
quits?

N. Meng, B. Ryder 13

Code-and-Fix process

N. Meng, B. Ryder 14

9/1/15

% of Effort

Code-and-Fix Process

Thrashing

Planning &
Process Mgt

Time

From McConnell, After the Goldrush, 1999

N. Meng, B. Ryder

15

A More Advanced Process

% of Effort

Thrashing

isble Progres

Planning &
Process Mgt

Time

N. Meng, B. Ryder

16

9/1/15

Examples of Process Models

Waterfall model
Prototyping model
Spiral model
Incremental model

N. Meng, B. Ryder

17

Waterfall Model

* The "classic” process model since 1970s

— Also called "software life

Analysis
b
-1 Design
A

A\ 4

cycle”

] Implementation
A

-

A

Testing & Integration —1

N. Meng, B. Ryder

Maintenance

18

9/1/15

Waterfall Phases i3

Maintenance

Analysis: Define problems

— requirements, constraints, goals and domain
concepts

Design: Establish solutions

— System architecture, components, relationship
Implementation: Implement solutions
Testing and integration: Check solutions

— Unit testing, system testing

Maintenance: the longest phase

Key Points of the Model

* The project goes through the phases
sequentially
* Possible feedback and iteration across
phases
—e.g., during coding, a design problem is
identified and fixed
« Typically, few or no iterations are used

—e.g., after a certain point of time, the
design is "frozen"

9/1/15

10

Waterfall Model Assumptions

All requirements are known at the start and
stable

Risks(unknown) can be turned into known

through schedule-based invention and

innovation

The design can be done abstractly and

speculatively

—i.e., it is possible to correctly guess in advance how
to make it work

Everything will fit together when we start the

Integration

How was the model developed?

a) A group of researchers developed and
proposed it as the best option of
existing methods

b) A group of practitioners innovated a
method that became the most widely
used model

c) A person copied a picture of a method
that he understood and could explain

9/1/15

11

Success story: space shuttle software
Charles Fishman, 1996

As the 120-ton space
shuttle sits
surrounded by almost
4 million pounds of
rocket fuel, exhaling
noxious fumes, visibly
impatient to defy
gravity, its on-board
computers take
command.

N. Meng, B. Ryder 23

“This software is bug-free"

* Impressive statistics

— The last 3 versions of the
program--420,000 lines of code had just 1
error each

— The last 11 versions of the software had a
total of 17 errors

— Commercial programs of equivalent
complexity would have 5,000 errors

N. Meng, B. Ryder 24

9/1/15

12

How did they write the right stuff?

* 1/3 of the process before coding

* NASA and Lockhead Martin groups agree
in the most minute detail about everything

 Specs are almost pseudo-code

* Nothing in the specs is changed without
agreement and understanding

* Task: upgrade software to add GPS
navigation
— 1.5% changes in program/6366 LOC
— 2500 page specs for the change

How expensive is the software?

« 260 people

* >40,000 pages of specifications

20 years

* $35 million Annual budget

* $700 million overall budget

« 700 million/420k = $1600/line of code

9/1/15

13

Pros and Cons

* Pros: widely used, systematic, good for
projects with well-defined requirements
— Makes managers happy
+ Cons:
— The actual process is not so sequential
* A lot of iterations may happen
— The assumptions usually don't hold

— Working programs are not available early
* High risk issues are not tackled early enough

— Expensive and time-consuming

When would you like to use waterfall?

« Work for big clients
enforcing formal 0
approach on vendors
« Work on fixed-scope,
fixed-price contracts
without many rapid
changes
« Work in an experienced
team

9/1/15

14

Observation

Standish group 1995
* Top three reasons for at least partial
failure projects
— lack of user input
— incomplete requirements, and
— changing requirement

N. Meng, B. Ryder 29

Prototyping Model

« Build a prototype when customers have
ambiguous requirements

/' Prototyping —

. . Customer
Analysis | Design Evaluation
\ Review & / Customer
UDdGTe satisfied

Testing &
Integration

y

A

Implementation

Maintenance N. Meng, B. Ryder 30

9/1/15

15

9/1/15

Key Points of the Model

« Iterations: customer evaluation followed
by prototype refinement

 The prototype can be paper-based or
computer-based

« It models the entire system with real data
or just a few screens with sample data

* Note: the prototype is thrown away!

Success stories of prototyping

* Organizations of all types do it

— Boeing builds digital prototypes of its
aircraft allowing the detection of design
conflicts

— Disney uses storyboards to work through
the process of producing feature-length
films

* Online systems and web interfaces

16

Pros and Cons

* Pros
— Facilitate communication about requirements
— Easy to change or discard
— Educate future customers

* Cons

— Iterative nature makes it difficult to plan and
schedule

— Excessive investment in the prototype

— Bad decisions based on prototype
* E.g., bad choice of OS or PL

When would you like to use prototyping?

« When the desired
system has a lot of -
interactions with users

9/1/15

17

* A risk-driven evolutionary model that combines
development models (waterfall, prototype, etc.)

Spiral Model

Determine objectives,

alternatives and
i
i
is!
analysis
i
nalysi
T
rototype
is!
REVIEW analysis |PToto"

Evaluate alternatives,
identify, resolve risks

constraints
Requirements plan
Life-cycle plan

Concept of 3
Operation

Development
plan

Integration

8 .
and test plan Integration

test

Acceptance

design / Detai
uirement design

Develop, verify
next-level product

led /

Spiral model

(SOM)

Spiral Phases

Objective setting

— Define specific objectives, constraints,

products, plans

— Identify risks and alternative strategies

Risk assessment and reduction

— Analyze risks and take steps to reduce risks

Development and validation

— Pick development methods based on risks

Planning

— Review the project and decide whether to

continue with a further loop

N. Meng, B. Ryder

36

9/1/15

18

What Is Risk?

« Something that can go wrong
— People, tasks, work products
* Risk management
—risk identification
—risk analysis
* the probability of the risk, the effect of the risk
—risk planning
* various strategies
—risk monitoring

N. Meng, B. Ryder 37

Risk Planning [Sommerville]

[Organizational [0 Prepare a briefing document for senior management
financial problems/|showing how the project is making a very important
restructuring contribution to the goals of the business

development time |of a program generator

N. Meng, B. Ryder 38

Risk Strategy
[Recruitment 1 Alert customer of potential difficulties and the
problems possibility of delays, investigate buying-in-components
[1 Defective 1 Replace potentially defective components with bought-
components in components of known reliability

1 Requirements |0 Derive traceability information to assess requirements
changes change impact, maximize information hiding in the design

[1 Underestimated [Investigate buying-in components, investigate the use

9/1/15

19

9/1/15

Key Points of the Model

 Introduce risk management into process

* Develop evolutionary releases to

— Implement more complete versions of
software

— Make adjustment for emergent risks

Pros and Cons

* Pros
— High amount of risk analysis to avoid/reduce risks

— Early release of software, with extra
functionalities added later

— Maintain step-wise approach with “"go-backs" to
earlier stages

+ Cons
— Require risk-assessment expertise for success
— Expensive

20

When to use the model?

* Large and mission-
critical projects -
« Medium to high-risk -
projects
« Significant changes are
expected

N. Meng, B. Ryder

41

Incremental Model

* A sequential of waterfall models
Feedback, adaptation

Analysis _ -
[Andlysis|

. -] Implementation \
’ Testing & Integration F\ ’ Testing & Integration

Design Design
’ Implementation ‘ Q 4

Release n Release n + 1
Iteration n: 3 weeks Iteration n+l: 3 weeks
(for example) (for example)

N. Meng, B. Ryder

S
\

42

9/1/15

21

9/1/15

Key Points of the Model

« Tterative: many releases/increments
— First increment: core functionality
— Successive increments: add/fix functionality
— Final increment: the complete product

* Require a complete definition of the whole

system to break it down and build
incrementally

Pros and Cons

* Pros

— Early discovery of software defects

— Early delivery of working software

— Less cost to change/identify requirements
 Cons

— Constant changes ("feature creep”) may
erode system architecture

22

When to use the model?

* The requirements of
the complete system
are clear

* Major requirements
must be defined while
some details can evolve
over time

* Need to get a product
to the market early

Spiral model vs. increment model

« Iterative models
— Most projects build
software iteratively
* Risk-driven vs.
client-driven

9/1/15

23

Unified Process (UP)

« An example of iterative process for
building object-oriented systems
— Very popular in the last few years
— By the same folks who develop UML

« It provides a context for our discussion
of analysis and design

A Little History

* "The three amigos": 6rady Booch, Ivar

Jacobson, James Rumbaugh

— Early 90s: Separated methodologies for object-
oriented analysis and design (OOAD)

—1996: Created the Unified Modeling Language
(UML)

—1999: Defined the Unified Process (UP) in
Rational Software Inc.

 Refinement: Rational Unified Process (RUP)
— Adaptable process framework + tools

9/1/15

24

9/1/15

Phases in UP

Inception |Elaboration| Construction Transition

* Inception: preliminary investigation
« Elaboration: analysis, design, and some coding
* Construction: more coding and testing

 Transition: beta tests and development

 Each phase may be enacted in an iterative
way, and the whole set of phases may be
enacted incrementally

Inception Phase

« Investigate approximate, business case,
scope, and vague estimates
— Should we even bother?

« Some basic analysis to decide whether
to continue or stop

* Inception is NOT "requirement” in
waterfall

25

Elaboration Phase

Most requirement analysis
Most design

Some coding and testing

— Implementation and testing for core architecture
and high-risk requirements

Deeper investigation of scope, risks, and
estimates

Work products

— Requirement models (UML use cases)

— An architectural description

— A development plan

Construction Phase

* More coding and testing

— Implementation and testing for the
remaining lower risk and easier elements

— Integration

« Work products ready for delivery
— A working software system
— Associated documentation

9/1/15

26

Transition Phase

* Beta tests and deployment

— Moving the system from the development
community to the user community

— This is important but ignored in most
software process model
« Work products

— A documented software system that is
working correctly in its operational
environment

Tteration Length

« Iteration should be short (2-6 weeks)
— Small steps, rapid feedback and adaptation

— Massive teams with lots of communication - but no

more than 6 months

« Iterations should be timeboxed (fixed length)

— Integrate, test and deliver the system by a
scheduled data

— If not possible: move tasks to the next iteration

9/1/15

27

Reasons for Timeboxing

« Improve programmer productivity with
deadlines

* Encourage prioritization and decisiveness

« Team satisfaction and confidence
— Quick and repeating sense of completion,
competency, and closure

— Increase confidence for customers and
managers

UP Disciplines

* Discipline: an activity and related artifact(s)
* Artifact: any kind of work product

« We will focus on artifacts related to two
disciplines
— Requirement modeling

* requirement analysis + use-case models , domain
models, and specs.

— Design
* design + design models

9/1/15

28

Agile Software Development

* A timeboxed iterative and evolutionary
development process
It promotes
— adaptive planning
— evolutionary development,
— incremental delivery
—rapid and flexible response to change

Any iterative method, including the UP, can be
applied in an agile spirit.

The Agile Manifesto

Kent Beck et al. 2001

« We are uncovering better ways of
developing software by doing it and helping
others do it. Through this work we have
come to value:

— Individuals and interactions over Processes
and tools

— Working software over Comprehensive
documentation

— Customer collaboration over Contract
negotiation
— Responding to change over Following a plan

N. Meng, B. Ryder 58

9/1/15

29

Key Points of Agile Modeling

The purpose of modeling is primarily to
understand, not o document

Modeling should focus on the smaller
percentage of unusual, difficult, tricky parts of
the design space

Model in pairs (or triads)

Developers should do the OO design modeling
for themselves

Create models in parallel
— E.g., inferaction diagram & static-view class diagram

Models are inaccurate

« only tested code demonstrates the true
design

* treat diagrams as throw-away
explorations

« Use the simplest tool possible to
facilitate creative thinking
— E.g., sketching UML on whiteboards

« Use "good enough” simple notation

9/1/15

30

Agile Methods

* Agile Unified Process (Agile UP)

 Dynamic systems development method
(DSDM)

« Extreme programming (XP)
* Feature-driven development (FDD)
« Scrum

Agile UP

« Keep it simple
— Prefer a small set of UP activities and artifacts
— Avoid creating artifacts unless necessary

* Planning

— For the entire project, there is only a high-level
plan (Phase Plan), to estimate the project end
date and other major milestones

— For each iteration, there is a detailed plan
(Iteration plan) created one iteration in advance

9/1/15

31

Pros and Cons

* Pros

— Customer satisfaction by rapid, continuous
delivery of useful software

— Close, daily cooperation between business people
and developers

— Better software quality and lower cost
+ Cons
— People may lose sight of the big picture
— Heavy client participation is required
— Poor documentation support for training of new
clients/programmers

When to use agile methods?

* Changing

requirements -
* Faster time to

market and

increased

productivity

* Frequently used in
start-up companies

9/1/15

32

A Borrowed Joke

How many software engineers does it take
to change a light bulb?

Five. Two to write the specification, one
to screw it in, and two to explain why the
project was late.

N. Meng, B. Ryder 65

9/1/15

33

